
- •1 Основні поняття про електричне поле
- •1.1Електричне поле та його характеристики
- •1.2 Електричне поле як особливий вид матерії Електрична взаємодія зарядів. Закон Кулона
- •1.3Електричне поле декількох зарядів
- •1.4Однорідне електричне поле. Еквіпотенціальні поверхні
- •1.5Потік вектора напруженості
- •2 Електричний струм провідності як фізичне явище
- •2.1 Провідники, діелектрики, напівпровідники
- •2.2 Провідники в електричному полі
- •2.3 Поляризація діелектрика
- •2.4 Електричний пробій діелектрика
- •3 Електричний струм та опір
- •3.1 Електричний струм та його густина
- •3.2 Опір та закон Ома. Залежність опору від температури та геометричних розмірів
- •3.3 Елементи опорів та реостати
- •4 Ємність. Конденсатор
- •4.1 Сполучення конденсаторів
- •4.2 Плоский конденсатор
- •4.3 Циліндричний конденсатор
- •4.4 Енергія електричного поля конденсатора
- •5 Найпростіше електричне коло та його елементи
- •5.1 Електричні кола та його елементи. Схема електричного кола
- •5.2 Електроенергія. Потужність та ккд
- •5.3 Закон Джоуля - Ленца
- •6 Режими роботи джерела електричної енергії
- •6.1 Узагальнений закон Ома
- •6.2 Електричне коло з декількома джерелами ерс
- •6.3 Баланс потужностей
- •6.4 Потенціальна діаграма
- •7 Розрахунок лінійних електричних кіл постійного струму
- •7.1 Закони Кірхгофа
- •7.2 Застосування законів Кірхгофа
- •7.3 Врахування джерел струму
- •8 Еквівалентні перетворення в лінійних електричних схемах
- •9 Поняття про трикутник та зірку з пасивних елементів кола
- •9.1 Перетворення трикутників опорів в еквівалентну зірку та навпаки
- •9.2 Сполучення джерел живлення
- •Розрахунок електричних кіл методом перетворення схеми ( метод «згортання» )
- •10 Поняття про втрату напруги у проводах ліній електропередач
- •10.1 Втрата напруги у проводах ліній електропередач
- •10.2 Вибір перерізу проводів за допустимою втратою напруг
- •10.3 Вибір раціональних напруг
- •11 Нерозгалужене коло із змінним опором
- •11.1 Коло зі змінним опором
- •11.2 Режими роботи кола
- •12 Розрахунок складних електричних кіл постійного струму
- •12.1 Розрахунок складних електричних кіл методом накладання( суперпозиції полів)
- •12.2 Розрахунок складних електричних кіл методом контурних струмів
- •12.3 Розрахунок складних електричних кіл методом вузлової напруги
- •12.4.2 Метод еквівалентного генератора
- •13 Магнітне поле
- •13.1 Магнітне поле електричного струму. Правило свердлика
- •13.2 Індукція магнітного поля
- •13.3 Магнітна проникність
- •13.4 Правило лівої руки
- •14 Характеристики магнітного поля
- •14.1 Магнітний потік
- •14.2 Вектори намагніченості та напруженості
- •14.3 Мрс та магнітна напруга. Закон повного струму
- •15 Магнітне поле провідника зі струмом та котушки
- •15.1 Магнітне поле провідника зі струмом
- •15.2 Магнітне поле котушки
- •16 Електромагнітна індукція
- •16.1 Явище електромагнітної індукції
- •16.2 Ерс електромагнітної індукції
- •16.3 Правило правої руки
- •17 Закон електромагнітної індукції
- •17.1 Закон електромагнітної індукції
- •17.2 Правило Ленца
- •17.3 Види магнітних полів
- •18 Феромагнетики
- •18.1 Намагнічування феромагнетиків
- •18.2 Циклічне перемагнічування
- •18.3 Гістерезис. Втрати від гістерезису
- •19 Феромагнітні матеріали
- •19.1 Класифікація феромагнітних матеріалів
- •19.2 Вихрові струми. Втрати в сталі
- •20 Магніти
- •20.1 Постійні магніти
- •20.2 Електромагніти
- •21 Магнітні кола
- •21.1 Класифікація магнітних кіл
- •21.2 Закон Ома для дільниці магнітного кола. Магнітний опір
- •21.3 Закони Кірхгофа для магнітного кола
- •21.4 Розрахунок нерозгалужених магнітних кіл
- •21.5 Розрахунок розгалужених магнітних кіл
- •21.5.1 Розгалужене симетричне коло
- •21.5.2 Розгалужене несиметричне коло
- •22 Явище самоіндукції
- •22.1 Індуктивність
- •22.2 Індуктивність кільцевої та циліндричної котушок
- •22.3 Самоіндукція. Ерс самоіндукції
- •22.4 Нелінійна котушка індуктивності
- •23 Явище взаємоіндукції
- •23.1 Енергія магнітного поля
- •23.2 Взаємоіндукція. Ерс взаємоіндукції
- •23.3 Принцип дії трансформатора
- •24 Принцип дії електричних машин
- •24.1 Перетворення механічної енергії в електричну (принцип дії генератора)
- •24.2 Перетворення електричної енергії в механічну (принцип дії двигуна)
13.4 Правило лівої руки
Під дією магнітного поля провідник зі струмом починає рухатися. Вважають, що на провідник діє електромагнітна сила магнітного поля (чи сила Ампера). Позначається - , Н.
де - довжина провідника (активна), м
- кут між провідником зі струмом та магнітними лініями.
Якщо провідник розміщений перпендикулярно магнітним лініям ( =90°):
Якщо провідник розміщений уздовж магнітних ліній, тобто =0°, то:
Напрямок руху провідника під дією магнітного поля збігається з напрямком електромагнітної сили. Зв'язок між напрямком струму, напрямком магнітного поля та напрямком руху провідника (чи електромагнітної сили) встановлює правило лівої руки: якщо розмістити долоню лівої руки так, щоб вектор магнітної індукції входив в неї, а витягнуті чотири пальця збігалися з напрямком струму, то відігнутий великий палець вкаже напрямок руху провідника (чи електромагнітної сили).
Для визначення напрямку сили, яка діє на електрон у магнітному поля, напрямок струму приймають протилежний напрямку руху (вектору швидкості) електрона, у позитрона - навпаки (напрямки струму і вектора швидкості збігаються):
Якщо заряджена частка не рухається у магнітному полі чи переміщається уздовж поля, то
14 Характеристики магнітного поля
14.1 Магнітний потік
Кількість силових магнітних ліній, які проходять скрізь поверхню провідника, характеризує потік магнітного поля. Магнітний потік однорідного поля - це векторна величина, яка чисельно дорівнює добутку магнітної індукції й поверхні площини, перпендикулярної до вектора цієї індукції. Позначається - , Вб.
,
де - магнітна індукція, Тл
- площа поверхні, перпендикулярної до вектора цієї індукції, м2
Одиниця вимірювання магнітного потоку названа в ім’я німецького фізика Вебера.
Якщо вектор індукції не перпендикулярний площі (неоднорідне магнітне поле), то визначають нормальну (перпендикулярну) складову цього вектора (ВН):
Нормальна складова вектора індукції:
Таким чином, для неоднорідного поля:
де - кут між вектором індукції та нормаллю.
Робота, яка виконується провідником зі струмом при пересіченні їм магнітного потоку, чисельно дорівнює добутку магнітного потоку й сили струму. Позначається - А, Дж.
За допомогою магнітних ліній зображують не лише магнітне поле й величину магнітної індукції, а й величину магнітного потоку. Сумарний магнітний потік скрізь замкнену поверхню дорівнює нулю, так як магнітні лінії замкнені, тобто кожна магнітна лінія, яка входе у замкнену поверхню, повинна з неї вийти. Таким чином, магнітний потік, який входе у замкнену поверхню, дорівнює магнітному потоку, який виходе з неї.