- •Программная лекция 1 из модуля 1 «предмет и задачи метеорологии. Методы метеорологии и климатологии. Метеорологические наблюдения»
- •Проблемная лекция 1 из модуля 1
- •Программа наблюдений на метеорологических станциях
- •Метеорологические приборы
- •Методы аэрологических наблюдений
- •Метеорологическая служба
- •Всемирная метеорологическая организация
- •Программная лекция № 2 из модуля 1
- •«Общие свойства атмосферы.
- •Основные метеорологические параметры,
- •Метеорологические явления»
- •Проблемная лекция 2 из модуля 1.
- •Состав верхних слоев атмосферы
- •Основные метеорологические элементы
- •Метеорологические явления
- •Вертикальная неоднородность атмосферы. Важнейшие свойства атмосферы
- •Горизонтальная неоднородность атмосферы
- •Циклоны и антициклоны
- •Программная лекция 3 из модуля 1 «атмосферное давление и плотность воздуха. Статика атмосферы»
- •Проблемная лекция 3 из модуля 1
- •Уравнение состояния сухого и влажного воздуха
- •Изменение давления воздух с высотой. Барометрическая формула
- •Вертикальный градиент давления
- •Однородная атмосфера
- •Программная лекция 4 из модуля 1
- •Структура ветра
- •Влияние препятствий на ветер
- •Градиентная сила
- •Силы, которые возникают при движении воздуха.
- •Установишееся движение при отсутствии трения. Градієнтний ветер
- •Установившееся движение при наличии трения
- •ГрадИЕнтнЫй ветер при круговых изобарах
- •Антициклон
- •Воздушные массы. Турбулентное перемешивание в атмосфере
- •Программная лекция 5 из модуля 1
- •«Водяной пар в атмосфере. Испарение.
- •Конденсация и сублимация водного пара.
- •Облачность. Осадки»
- •Проблемная лекция 5 Из модуля 1
- •Конденсация и сублимация водного пара. Облачность. Осадки» вода в атмосфере
- •Характеристики влажности воздуха
- •Суточный и годовой ход влажности воздухА
- •Изменение влажности с высотой
- •Общие условия фазовых переходов воды в атмосфере
- •Испарение и испаряемость Упругость насыщения над разными поверхностями
- •Скорость испарения
- •Суточный и годовой ход испарения
- •Облачность. Классификация облаков
- •Годовой ход туманов
- •Химический состав осадков
- •Продукты наземной конденсации:
- •Водный баланс на земном шаре
- •Программная лекция 1 из модуля 2 «общие положения радиационного режима в атмосфере. Основные понятия и законы излучения»
- •Проблемная лекция 1 из модуля 1 «общие положения радиационного режима в атмосфере. Основные понятия и законы излучения» основные законы лучистой энергии
- •Потоки солнечной энергии
- •Факторы, которые влияют на приход прямой радиации к земной поверхности
- •Рассеянная и суммарная солнечные радиаци
- •Суммарная радиация (q) - это сумма прямой (s') и рассеянной радиации (d).
- •Альбедо земной поверхности
- •Длинноволновое излучение земной поверхности и атмосферы
- •Радиационный баланс деятельной поверхности
- •Природа парникового эффекта, его глобальные экологические и социальные следствия
- •Программная лекция 2 из модуля 2 «термодинамика атмосферы. Адиабатические процессы»
- •Проблемная лекция 2 из модуля 2 «термодинамика атмосферы. Адиабатические процессы»
- •Потенциальная температура
- •Влажноадиабатические изменения температуры
- •Псевдоадиабатический процесс
- •Энергия неустойчивости, конвекция и ускорение конвекции
- •Термическая стратификация атмосферы
- •Уровень конвекции
- •Инверсии в тропосфере
- •Инверсии свободной стратосферы
- •Вопросы для самопроверки
- •Программная лекция 3 из модуля 2
- •«Тепловой режим атмосферы.
- •Суточный и годовой ход температуры воздуха.
- •Тепловой режим почвы и водных бассейнов»
- •Проблемная лекция 3 из модуля 2
- •Температура воздуха на разных широтах
- •Температурные аномалии
- •Суточный и годовой ход температуры воздух Суточный ход температуры
- •Годовой ход температуры воздуха
- •Заморозки
- •Тепловой баланс деятельной поверхности и атмосферы Тепловой баланс деятельной поверхности
- •Тепловой баланс системы Земля-атмосфера
- •Тепловой баланс почвы и воды
- •Изменение температуры почвы с глубиной
- •Нагревание и охлаждение водоемов
- •Вопросы для самопроверки
- •Проблемная лекция 1 из модуля 3
- •Программная лекция 1 з модулю 3
- •Теплооборот, влагообмен и атмосферная циркуляция как климатообразующие факторы
- •Влияние географической широты на климат
- •Изменение климата с высотой
- •Влияние распределения моря и суши на климат
- •Континентальность климата, индексы континентальности
- •Орография и климат
- •Океанические течения и климат
- •Влияние снежного и растительного покрова на климат
- •Общая циркуляция атмосферы
- •Термическая циркуляции в атмосфере
- •Общая циркуляция атмосферы
- •Циркуляция над однородной поверхностью
- •Циркуляция в реальной атмосфере
- •Пассаты
- •Антипассаты
- •Муссоны
- •Местные ветры
- •Горно-долинные ветры
- •Ледниковые ветры
- •Маломасштабные вихри
- •Служба погоды
- •Синоптический анализ и прогноз
- •Долгосрочные прогнозы
- •Принципы классификации климатов
- •Климат украины
- •Факторы, которые вызывают изменения климата
- •Изменения земного климата в прошлом и их причины
- •Колебание климата в 20-м веке
- •Использованная литература
Скорость испарения
Количественно испарение характеризуется массой воды, которая испаряется в единицу времени с единицы поверхности. Эта величина называется скоростью испарения. В системе СИ она выражается в кг/(м2.с), в СГС – в г/(см2.с).
Скорость испарения увеличивается с повышением температуры испаряющей поверхности. В процессе испарения молекулы воды, которые переходят в пар, тратят часть своей энергии на преодоление сил сцепления и на работу расширения, связанную с увеличением объема жидкости, которая переходит в газообразное состояние. В результате средняя энергия молекул, которые остаются в жидкости, уменьшается, и жидкость охлаждается. Для продолжения процесса испарения необходимо дополнительное тепло, которое называется теплотой испарения. Теплота испарения уменьшается с увеличением температуры испаряющей поверхности.
Если испарение проходит с поверхности воды, то эта зависимость выражается формулой:
Q = Q0 - 0,65 . t, (5.9)
где Q - теплота испарения, Дж/г;
t – температура поверхности, которая испаряет, 0С;
Q0 = 2500 Дж/кг.
Если испарение проходит из поверхности льда или снега, то:
Q = Q0 - 0,36 . t, (5.10)
Для практических целей скорость испарения выражается высотой (в мм) слоя воды, которая испаряется за единицу времени. Слой воды, высотой 1мм, который испарится с площади 1 м2, отвечает ее массе в 1 кг.
Согласно закону Дальтона, скорость испарения W в кг/(м2.с) прямо пропорциональная дефициту влажности, вычисленному по температуре испаряющей поверхности, и обратно пропорциональная атмосферному давлению:
,
где Е1 - упругость насыщения, взятая по температуре испаряющей поверхности, гПа;
е - упругость пара в окружающем воздухе, гПа;
Р – атмосферное давление, гПа;
А – коэффициент пропорциональности, который зависит от скорости ветра.
Из закона Дальтона видно, что чем больше разность (Е1-е), тем больше скорость испарения. Если поверхность, которая испаряет, теплее воздуха, то Е1 большее, чем упругость насыщения Е при температуре воздуха. В таком случае испарение продолжается даже тогда, когда воздух насыщен водяным паром, то есть если е=Е (но Е<E1).
Наоборот, если испаряющая поверхность холоднее воздуха, то при довольно большой относительной влажности может оказаться, что Е1<e. В этом случае W<0, то есть испарение сменится конденсацией пара на поверхности, несмотря на то, что пар в воздухе еще не достиг насыщения.
Зависимость скорости испарения от атмосферного давления обусловлена тем, что в неподвижном воздухе молекулярная диффузия усиливается с уменьшением внешнего давления: чем оно меньшее, тем легче молекулам оторваться от испаряющей поверхности. Однако атмосферное давление у поверхности земли колеблется в сравнительно небольших пределах. Поэтому, оно не может существенным образом изменять скорость испарения. Но его приходится учитывать, например, при сравнении скоростей испарения на разных высотах в горной местности.
Скорость испарения зависит от скорости ветра. С увеличением скорости ветра увеличивается турбулентная диффузия, от которой в значительной мере зависит скорость испарения. Чем интенсивнее турбулентное перемешивание, тем быстрее протекает перенос водяного пара в окружающую среду. Если воздух переносится с суши на водоем, то скорость испарения с водоема увеличивается, так как в воздухе, который натекает на сравнительно более сухую поверхность, дефицит влажности больше, чем он над водоемом. При переносе воздуха с водной поверхности на сушу скорость испарения постепенно уменьшается в результате уменьшения дефицита влажности в воздухе, который находится над водой. На скорость испарения с поверхностей морей и океанов влияет их соленость, так как упругость насыщения над раствором меньше, чем над пресной водой.
На испарение из поверхности грунта значительно влияют физические свойства, состояние деятельной поверхности, рельеф и др. факторы. Гладкая поверхность испаряет меньше, чем шероховатая, так как над ней слабее развито турбулентное перемешивание, чем над шероховатой поверхностью. Светлые почвы при прочих равных условиях испаряют меньше, чем темные, так как они меньше нагреваются. Рыхлые почвы с широкими капиллярами испаряют меньше, чем плотные почвы с узкими капиллярами. Объясняется это тем, что по узким капиллярам вода поднимается ближе к поверхности почвы, чем по широкой. Скорость испарения зависит от степени увлажнения почвы: чем суше почва, тем медленнее происходит испарение. На скорость испарения влияет рельеф местности. На возвышенностях, над которыми имеет место интенсивное турбулентное перемешивание, испарение происходит быстрее, чем в низинах, балках и долинах, где воздух менее подвижен.
На скорость испарения влияет растительный покров. Он значительно уменьшает испарение непосредственно с поверхности почвы. Однако сами растения испаряют много влаги, которые берут из почвы. Испарение влаги растениями является физико-биологическим процессом и называется транспирацией.
Полная отдача водяного пара с определенной поверхности с одинаковым растительным покровом называется эвапотранспирацией. Она включает испарение из поверхности земли и от растений.
Испаряемость – это испарение, максимально возможное в данной местности с определенной деятельной поверхности при достаточном количестве влаги при существующих здесь метеорологических условиях.