Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lektsii_meteorologia.doc
Скачиваний:
429
Добавлен:
06.02.2016
Размер:
3.28 Mб
Скачать

Изменение давления воздух с высотой. Барометрическая формула

По какому закону меняется атмосферное давление с высотой?

Допустим, что известно давление на одном уровне. Какое оно в тот же момент на другом уровне? Возьмем вертикальный столб воздуха с поперечным разрезом, равным единице, и выделим в этом столбе тонкий слой, ограниченный снизу поверхностью на высоте Z , а сверху – поверхностью на высоте (Z+dZ). Толщина слоя dZ.

(-P+dP)

Z+dZ

Z

P

-gρd

Рисунок 3.1 – Силы, которые действуют на элементарный объем воздуха

На нижнюю поверхность выделенного элементарного объема соседний воздух действует с силой давления, которая направленная снизу вверх. Модуль этой силы на рассмотренной поверхности площадью, равной единице, и будет давлением воздуха Р на этой поверхности. На верхнюю поверхность элементарного объема соседний воздух действует с силой давления, которая направлена сверху вниз. Модуль этой силы P+dP есть давление на верхней границе. Это давление отличается от давления на нижней границе на маленькую величину dр, причем заранее не известно, будет dр положительным или отрицательной, то есть будет давление на верхней границе выше или ниже, чем на нижней границе.

Что касается сил давления, которые действуют на боковые стенки объема, то допустим, что в горизонтальном направлении атмосферное давление не меняется. Это значит, что силы давления, которые действуют со всех сторон на боковые стенки, уравновешиваются: их равнодействующая равняется нулю. Отсюда вытекает, что воздух в горизонтальном направлении не имеет ускорения и не перемещается.

Кроме того, на рассмотренный элементарный объем действует сила тяжести, которая направленная вниз и равняется ускорению свободного падения g, умноженному на массу воздуха во взятом объеме. Поэтому при вертикальном разрезе, равном единице, объем равняется dz, масса воздуха в нем равняется ρdz, где ρ – плотность воздуха, а сила тяжести равняется gρdz.

Сила тяжести gρdz и сила давления Р+dp направлены вниз; возьмем их с отрицательным знаком. Вверх направлена сила давления Р, ее возьмем с знаком “ + “.

В состоянии равновесия:

- ( Р + dp ) + Р – gρdz = 0

или dр = - gρdz (3.4)

Отсюда следует, что при движении вверх атмосферное давление падает.

Уравнение (3.4) называется основным уравнением статики атмосферы.

= - gp

- gp = 0

- g = 0,

-- падение давления на единицу прироста высоты, то есть вертикальный барический градиент (вертикальный градиент давления).

- вертикальный барический градиент, отнесенный к единице массы и направленный вверх.

Основное уравнение статики выражает условие равновесия между двумя силами, которые действуют на единицу массы воздуха по вертикали – вертикальным барическим градиентом и силой тяжести.

Чтобы получить уравнение для изменения давления при конечном приросте высоты нужно проинтегрировать уравнение (3.4) в пределах от уровня z1 до z2 с давлением от Р1 до Р2. При этом плотность воздуха ρ есть переменной величиной, функцией высоты.

dp = - gρdz

ρ =

dp = - dz ли

= -dz (3.5)

Проинтегрируем уравнение (3.5)

= -

ln p2 – ln p1 = -

Температура – величина перемена, зависит от высоты. Но эта зависимость не может быть точно описана математической функцией. Поэтому, берут среднее значение температуры Tm между уровнями z1 и z2. Тогда среднюю температуру можно вынести за знак интеграла.

ln p2 – ln p1 = -

ln = -( z2 – z1 ) (3.6)

Потенцируем уравнения 3.6, и получим:

(3.7)

Уравнение (3.7) называется барометрической формулой.

Эта формула показывает, как меняется атмосферное давление с высотой в зависимости от температуры воздуха.

С помощью барометрической формулы можно решить три задачи:

  1. зная давление на одном уровне и среднюю температуру слоя воздуха, найти давление на другом уровне;

  2. зная давление на обоих уровнях и среднюю температуру слоя воздуха, найти разность уровней (барометрическое нивелирование );

  3. зная разность уровней и значения давления на них, найти среднюю температуру слоя воздуха.

В случае расчетов для влажного воздуха берется значение R для сухого воздуха, умноженное на (1 + 0,378).

Важным вариантом первой задачи есть приведение давления к уровню моря. Зная давление на некоторой станции, расположенной на высоте Z над уровнем моря, и температуру t на этой станции, вычисляют сначала среднюю температуру на рассмотренной станции и на уровне моря. Для уровня станции берется фактическая температура, а для уровня моря – та же температура, но увеличенная в той мере, в которой в среднем меняется температура воздуха с высотой. Средний вертикальный градиент температуры в тропосфере принимается равным 0,6 °С /100 г.

Итак, если станция имеет высоту 200 м и температура на ней 16 °С, то для уровня моря температура принимается равной 17,2 °С , а средняя температура составит 16,6 °С. После этого по давлению на станции и по полученной средней температуре определяется давление на уровне моря. Приведение давления к уровню моря необходимо потому, что на приземные карты погоды всегда наносится давление, приведенное к уровню моря. Этим исключается влияние расхождений в высотах станций на значение давления и становится возможной выяснить горизонтальное распределение давления.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]