Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Word.docx
Скачиваний:
29
Добавлен:
09.06.2015
Размер:
517.41 Кб
Скачать

Силы инерции.

 

Перепишем основное уравнение динамики в НИСО (16) в виде:

, (17) где

переносная сила инерции. (18)

(18а)

часто называют поступательной силой инерции. Она, например, проявляется при резком торможении автомобиля, когда нас резко бросает вперед, т.е. в сторону, противоположную ускорению .

центробежная сила инерции. (18б)

Примером проявления этой силы служат перегрузки, возникающие при поворотах.

Последний член в выражении (18) не имеет «специального» названия и «отвечает» за неравномерность вращения.

Важно отметить, что силы, входящие в выражение (18), как и, естественно, сама переносная сила, не зависят от относительной скорости движения частицы, а являются исключительно следствием ускоренного движения НИСО.

Совершенно иначе обстоит дело с третьим слагаемым в правой части уравнения (17).

сила Кориолиса, (19)

или кориолисова сила инерции.

Кориолисова сила возникает только тогда, когда частица движется () во вращающейся НИСО, т.е. в отличие от других сил инерции зависит от относительного движения частицы.

Итак, для описания движения частицы в НИСО кроме сил, обусловленных взаимодействием тел, мы формально ввели силы инерции. Каков же характер этих сил?

Они не являются силами в ньютоновском смысле, т.е. мерой взаимодействия тел, а обусловлены свойствами самих НИСО. Поэтому на силы инерции третий закон Ньютона не распространяется.

Силы инерции не инвариантны относительно перехода из одной системы отсчета в другую. И, наконец, они существуют только в НИСО. В ИСО этих сил нет – об этом необходимо помнить во избежание недоразумений.

Силы инерции всегда являются внешними по отношению к любой системе движущихся тел. Т.е. движение тел под действием сил инерции аналогично движению во внешних полях. Поэтому на силы инерции можно смотреть как на действие со стороны каких-то реальных полей.

Переносные силы инерции, так же как и ньютоновские, совершают работу.

Кориолисова сила инерции, как это следует из (19), всегда перпендикулярна скорости относительного движения тела () и поэтому работы не совершает.

гироскопическая сила, непотенциальная.

Все силы инерции, подобно силам тяготения, пропорциональны массе тела.

Поэтому в однородном поле сил инерции, как и в поле сил тяготения, все тела движутся с одним и тем же ускорением независимо от их масс. Это весьма существенный факт с далеко идущими последствиями.

 

Движение тел на Земле.

Используем основное уравнение динамики в НИСО (16) применительно к движению тел относительно Земли.

(16/)

Переобозначим для простоты записи , т.к. всё, что нас интересует, происходит в НИСО, связанной с Землей (система).

Далее, преобразуем уравнение (16/) в соответствии со следующими договоренностями:

1. Пусть Земля вращается равномерно, т.е. и .

2. Выберем начало отсчета в центре Земли, тогда и – переносные скорость и ускорение центра Земли относительно неподвижной системы отсчета – Солнца (гелиоцентрическую систему отсчета называют также системой Коперника).

3. Сила взаимодействия может быть представлена как ,

где гравитационное притяжение Земли;

- равнодействующая гравитационного притяжения небесных тел – Солнца, Луны, звезд и других

планет;

- равнодействующая других сил (сопротивления воздуха, трения, упругости и т.д.)

В этих обозначениях уравнение (16/) приобретает вид

.

Обобщенный закон Галилея гласит: все тела в однородном поле тяготения падают с одинаковыми ускорениями.

Иначе говоря, сила, действующая на тело, строго пропорциональна массе тела. В этом отношении силы инерции, которые также строго пропорциональны массам тел, ведут себя так же, как и силы тяготения.

Посмотрим, как ведет себя поле тяготения вблизи поверхности Земли. Основной вклад в силу вносят гравитационные поля Солнца и Луны – небесных тел (НТ). Они убывают пропорционально обратным квадратам расстояний от этих тел () и поэтому неоднородны. Однако размеры Земли столь малы по сравнению с этими расстояниями, что, в первом приближении, изменениями внешних гравитационных полей на расстояниях порядка земного диаметра можно пренебречь, а сами поля считать однородными. Следовательно, в принятом приближении, внешнее гравитационное поле сообщает всем телам у поверхности Земли такое же ускорение, что и центру Земли, поэтому

, или . (19/)

Т.о., силы гравитационного притяжения Солнца, Луны и других небесных тел в НИСО, связанной с Землей, полностью компенсируются поступательными силами инерции, возникающими из-за ускорения, сообщаемого Земле этими же гравитационными полями. Тогда

. (20)

Это уравнение движения тела вблизи поверхности Земли.

Векторная сумма (сила взаимодействия определяется из закона всемирного тяготения) пропорциональна массе тела и не зависит от скорости его относительного движения. Эта сумма характеризует только гравитационное поле Земли и её вращение.

Представим её в виде:

. (21)

Определенная таким образом величина одинакова для всех тел и определяется только лишь конкретной точкой пространства, а уравнение относительного движения тела принимает вид:

. (22)

Чтобы установить физический смысл вектора , положим скорость тела равной нулю и допустим, что внешних сил нет (). Тогда из (22) следует

.

Т.о., вектор есть ускорение свободно падающего тела относительно Земли при условии, что его скорость в рассматриваемый момент времени равна нулю.

Из (21) видно, что ускорение свободного падения является суммой двух слагаемых

, (23)

где – ускорение, вызванное силой гравитационного притяжения Земли. Такое ускорение мы получили бы в неподвижной системе отсчета при условии, что, помимо земного гравитационного, никаких других полей нет.

Второе слагаемое – ускорение, сообщаемое центробежной силой инерции, связано с вращением Земли.

Оговорка, сделанная выше по поводу относительной скорости, необходима, т.к. при появляется дополнительное ускорение, обусловленное кориолисовой силой инерции.

 

Вес тела.

Вес тела – это сила, с которой это тело действует на подставку (на которой оно лежит) или тянет за подвес (к которому оно подвешено).

При этом тело и подставка (подвес) покоятся в системе отсчета, где производится взвешивание. Обычно, когда говорят о весе тела, предполагается, что тело и подвес (подставка), покоятся относительно Земли.

Если тело действует на подвес с силой , то подвес действует на тело с противоположно направленной силой . По сути, и силы взаимодействия подвеса и тела. Поэтому они удовлетворяют третьему закону Ньютона: . Тогда, предполагая, что тело на подвесе покоится относительно Земли (), из (22) получим

, (24)

Учитывая (23), можем записать

, (25)

т.е. вес равен геометрической сумме силы гравитационного притяжения Земли и центробежной силы инерции, а направление нити подвеса (отвеса) определяет направление силы и, следовательно, ускорения свободного падения .

На рисунке показаны направления ускорений в предположении,

 что Земля имеет форму шара со сферически-симметричным

распределением вещества по объему.

Вектор направлен точно к центру Земли. Однако и в этом

случае направление отвеса не совпадает с вектором , а

определяется вектором , т.е. диагональю параллелограмма,

построенного на векторах и .

Для сферически симметричной Земли угол между

векторами ускорений можно найти с помощью теоремы синусов

.

Учитывая, что , получаем

, (26)

где географическая широта места. На полюсе и на экваторе угол обращается в нуль.

Для реальной Земли формула (26) приближенна, но достаточно точна.

Проектируя векторы и на направление вектора и полагая и , получим приближенную (ошибка расчета порядка ) формулу, связывающую величину ускорения свободного падения с его компонентами

. (27)

Опыты показали, что значения и зависит от географической широты места.

;

.

Если бы Земля была шаром со сферически-симметричным распределением вещества в нем, то величина не должна была бы зависеть от широты места. Наблюдаемая разница объясняется сплюснутостью Земли, обусловленной действием центробежных сил.

Совершенно аналогично «земной» складывается ситуация с определением веса тела на любом объекте, находящемся в поле тяготения небесных тел, например, на космическом корабле. В силу малых размеров корабля гравитационное поле, создаваемое небесными телами (Солнцем, Землей, Луной), с высокой степенью точности будет внутри корабля однородным. В корабле с выключенными двигателями, свободно падающем в гравитационном поле небесных тел, это поле полностью компенсируется поступательными силами инерции, возникающими в системе отсчета, связанной с кораблем, из-за ускорения, сообщаемого тем же самым гравитационным полем. Ввиду ничтожности гравитационного поля, создаваемого самим кораблем, в выражении (21) член может быть обусловлен исключительно вращением корабля и равен (центробежная сила). Если корабль не вращается (), то и вес любых тел, неподвижных относительно корабля, будет равен нулю, т.е. возникает состояние невесомости.

«Искусственная тяжесть» возникает при вращении корабля (нескомпенсированная внешними гравитационными полями центробежная сила) или при работе двигателей, сообщающих кораблю дополнительное поступательное ускорение (добавляется член в уравнение (22)). Тогда все тела внутри космического корабля снова становятся «весомыми». Именно этим «весом» обусловлены перегрузки, которые испытывают космонавты при старте и торможении космических кораблей.

Однако приближение (19/) выполняется не всегда, и может нарушаться при определенном расположении Солнца и Луны. Следствием неоднородности внешних гравитационных полей (не строго равно ) являются приливы.

 

Приливы.

У берегов океанов и морей дважды в сутки, с интервалом , наблюдается поднятие (прилив) воды до некоторого максимального уровня (полная вода), а затем её опускание (отлив) до минимального уровня (малая вода). Разность уровней большой и малой воды называется амплитудой прилива. Время между следующими друг за другом положениями полной (или малой) воды точно совпадает с половиной промежутка времени, в течение которого Луна в своем видимом движении совершает полный оборот вокруг Земли. Поэтому причину приливов и отливов уже давно связывали с положением Луны на небесном своде, но впервые объяснил это явление Ньютон.

Возникновение приливов и отливов объясняется неоднородностью полей тяготения Луны и Солнца.

Очевидно, что гравитационное поле, создаваемое небесными телами, неоднородно. Поэтому в земной системе отсчета его полная компенсация поступательной силой инерции, связанной с ускоренным движением центра масс Земли, имеет место только в самом центре масс, куда мы помещаем начало отсчета. В остальных точках земного шара можно говорить лишь о приблизительном равенстве сил тяготения и обусловленной ими поступательной силы инерции. Нескомпенсированность именно этих сил наиболее существенно будет проявляться вблизи поверхности Земли, вызывая приливы. Хотя лунное поле тяготения слабее солнечного, но оно более неоднородно, поскольку Луна почти в 400 раз (384 тыс. км и 150 млн. км) ближе к Земле, чем Солнце, поэтому влияние Луны более существенно.

Следует отметить, что Луна обращается вокруг Земли по эллиптической орбите. В перигее она удалена от Земли на 57 земных радиусов, а в апогее – на 63,7 земных радиусов.

Если ввести приливообразующую силу , обусловленную неполной компенсацией силы тяготения Луны (Солнца) поступательной силой инерции и отнесенную к единице массы, на которую они действуют, то для Луны отношение изменяется в пределах от (в апогее) до (в перигее). Для Солнца при его среднем удалении от Земли эта величина составляет и меняется в течение года примерно на . Т.о., приливообразующая сила Луны в раза больше, чем Солнца.

Очевидно, что приливообразующие силы ничтожно малы по сравнению с обычной силой тяжести на Земле. Если бы рассматриваемые силы оставались постоянными во времени, то они лишь слегка изменили бы равновесную форму свободной поверхности воды в океане. То обстоятельство, что эти силы вызывают такое грандиозное явление природы, как приливы и отливы, связано с тем, что они периодически меняются во времени. Это вызывает периодические изменения направления отвеса в каждой точке земного шара, что и является непосредственной причиной приливов и отливов.

Солнечные приливы накладываются на приливы лунные. При этом лунные приливы могут как усиливаться, так и ослабляться солнечными. В полнолуние и новолуние, когда Луна и Солнце находятся с одной стороны Земли, происходятбольшие (сизигийные) приливы. И наоборот, когда Луна находится в первой или последней четверти, наблюдаютсямалые (квадратурные) приливы.

Полная теория приливов ещё не создана. Это объясняется тем, что на характере приливов существенно сказывается большое число различных параметров: сложный рельеф дна океанов и морей, наличие материков и островов, очертания берегов, трение, морские течения и ветры, деформация самой Земли под действием приливообразующих сил и множество других трудно учитываемых факторов.

На открытых островах в океане амплитуда прилива в полнолуние и новолуние обычно достигает примерно одного метра. У берегов океана амплитуда приливов составляет около двух метров. Немного мест, где амплитуда приливов достигает трех метров, и очень мало, где шести. Все они находятся в узких проливах, либо в глубине длинных заливов. Наиболее значительные приливы наблюдаются в заливе Фунди, на восточном берегу Канады. Этот залив расположен между материком и полуостровом Новая Шотландия. Амплитуда прилива составляет при входе в залив и нарастает до в глубине залива. Во время сизигийных приливов здесь наблюдались амплитуды свыше . (Сивухин, т.I. с. 360-366).