Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Инстэк_коллоквиум_шпора.doc
Скачиваний:
564
Добавлен:
02.06.2015
Размер:
1.24 Mб
Скачать

Парадокс Алле.

Парадокс демонстрирует неприменимость теории максимизации ожидаемой полезности в реальных условиях риска и неопределённости. Автор корректно, с позиций математики, объясняет суть парадокса. Парадокс демонстрирует, что реальный агент, ведущий себя рационально, предпочитает не поведение получения максимальной ожидаемой полезности, а поведение достижения абсолютной надежности.

Сам Алле провёл психологический эксперимент, описанный ниже, и получил парадоксальные результаты.

Индивидам предлагают выбор по одному решению из двух пар рискованных решений.

В первом случае в ситуации A есть 100 % уверенность в получении выигрыша в 1 млн франков, а в ситуации B имеется 10 % вероятность выигрыша в 5 млн франков, 89 % — в 1 млн франков и 1 % — не выиграть ничего.

Во втором случае тем же индивидам предлагается сделать выбор между ситуацией C и D. В ситуации C имеется 10 % вероятности выигрыша в 5 млн франков и 90 % не выиграть ничего, а в ситуации D 11 % составляет вероятность выигрыша в 1 млн франков и 89 % — не выиграть ничего.

Алле установил, что значительное большинство индивидов в этих условиях предпочтет выбор ситуации A в первой паре и ситуации C во второй. Этот результат воспринимался как парадоксальный. В рамках существовавшей гипотезы индивид, отдавший предпочтение выбору А в первой паре, должен выбрать ситуацию Д во второй паре, а остановивший выбор на В должен во второй паре отдать предпочтение выбору С. Алле математически точно объяснил этот парадокс. Его основной вывод гласил, что рационально действующий агент предпочитает абсолютную надежность.

Парадокс можно сформулировать в виде выбора между двумя вариантами, в каждом из которых с некоторой вероятностью достаётся та или иная сумма денег:

Здесь X — неизвестная выбирающему сумма.

Какой выбор будет более разумным? Результат останется прежним, если «неизвестная сумма» X — это 100 миллионов? Если это «ничего»?

Математическое ожидание в первом варианте равно

 ,

а во втором: 

,

поэтому математически второй вариант B выгоднее независимо от значения X. Но люди боятся нулевого исхода в варианте B и поэтому чаще выбирают A. Однако если , то психологический барьер устраняется, и большинство уходит от варианта A.

Теоретические концепции поведения экономических агентов в условиях неопределенности и их тестирование. «Рамочные» эффекты.

Принимая решение в условиях неопределенности, индивид всегда участвует в своего рода лотерее. Например, покупая некую акцию, инвестор может как получить значительный выигрыш, так и лишиться инвестированных средств Обозначив через xi исходы в такого рода лотерее, мы можем записать эту лотерею следующим образом

L1 р о х1 (1 - р) о х2 ,

что означает: "Индивид с вероятностью р получит приз х1 и с вероятностью (1 - р) - приз х2 " Альтернативой участию в этой лотерее может быть покупка иной акции

L2 q о х3 (1 - q) о х4

Какую из этих двух лотерей предпочтет индивид? При совпадении перечня исходов(призов) в обеих лотереях (х1 = х3; х2 = х4 ) ответ на этот вопрос может быть обусловлен вероятностным распределением выигрышей. Изменив вероятности получения призов в сторону увеличения вероятности получения лучшего приза, мы получим новую лотерею, которая будет стохастически доминировать исходную (более подробно о стохастическом доминировании будет сказано позднее). Но это отнюдь не снимает проблему ранжирования лотерей при отсутствии четко выраженного стохастического доминирования, столь частого при большем количестве возможных исходов.

Лотереи. Сведение сложных лотерей к простым.

Простая лотерея может быть описана как вектор вероятностей выпадения возможных исходов: L(р)=(р1, р2 , ... , рn), где i p i =1 и p i ≥ 0 для всех i =1, ... , n.

Геометрически простая лотерея соответствует точке на (n -1)-мерном симплексе

Рис.1.1. n = 2

Рис.1.2. n = 3

Сложные лотерии (compound lotteries)- в отличие от простых лотерей - допускают возможность рассмотрения в качестве возможных исходов не только получение индивидом неких конкретных "призов", но так называемых "вторичных" лотерей. Сложной, например, является лотерея, включающая в перечень возможных призов билеты следующего тура этой лотереи.

Математически сведение сложной лотереи к простой, т.е. определение вероятностей получения конечных призов, может быть осуществлено путем расчета сумм условных вероятностей, т.е. вероятностей получения этих призов во вторичных лотереях, взвешенных по вероятностям выпадения вторичных лотерей:

p(xi) = i p(xiLj ) p( Lj).

Например, если призами в первичной лотерее выступают лотереи

L1 =(0.6, 0.4) и L2 =(0.2, 0.8), причем вероятность выигрыша L1 равна 2/3, а вероятность выигрыша L2 равна соответственно 1/3, то такая сложная лотерея будет эквивалентна простой лотерее с вероятностями получения конечных призов

(0.6 х (2/3) + 0.2 х (1/3), 0.4 х (2/3) + 0.8 х (1/3) ) = (14/30, 16/30).

Графически этот процесс сведения этой сложной лотереи к простой представлен на рис. 1.3.а, а следующий рисунок 1.3.б иллюстрирует сходную процедуру в предположении существования ( в каждой из двух вторичных лотерей ) уже не двух, а трех конечных призов.

1.3.а

1.3.б

Допустимость подобного сведения сложных лотерей к простым следует оговорить как отдельную предпосылку дальнейшего анализа (RCLA - the reduction of compound lotteries axiom), ибо с точки зрения отдельного индивида различные сложные лотереи, сводимые к одной и той же простой лотерее, могут оцениваться весьма различным образом. В частности, Джошуа Ронен (Ronen,1973) убедился, что даже простая перестановка двух этапов лотереи влияет на ее привлекательность для индивидов,а именно, семидесятипроцентный шанс получить 100 долл с вероятностью 30 % оказался более привлекательным для опрашиваемых, чем тридцатипроцентный шанс получить 100 долл с вероятностью 70 %. Но подобного рода соображения мы пока оставим в стороне, и в дальнейшем будем полагать эквивалентными различные сложные лотереи, сводимые к одной и той же простой лотерее.