Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТСП 11.doc
Скачиваний:
1735
Добавлен:
27.05.2015
Размер:
4.3 Mб
Скачать

3.2. Фотонно-лучевые источники

Практическое применение волновой теории света и усовер­шенствование технологии изготовления оптических линз, стекол и зеркал позволили создать целый ряд разнообразных оптических приборов. Была установлена принципиальная возможность фоку­сировки светового пучка на относительно небольших поверхно­стях и концентрации энергии, достаточной для разогрева и плав­ления различных материалов. В качестве источника светового из­лучения использовали Солнце.

Устройства для технологического применения солнечной энер­гии в земных условиях имеют до сих пор сугубо эксперимен­тальный характер, так как они требуют непрерывного слежения за перемещающимся относительно Земли Солнцем и зависят от со­стояния атмосферы. Вместе с тем возможность использования да­ровой солнечной энергии, плотность мощности которой составляет в среднем около 400 Вт/м2 , стимулирует развитие различных способов ее преобразования в другие виды энергии (прежде всего в тепловую и электрическую).

Создание лазеров позволило широко применять их в различ­ных исследованиях для передачи информации, для связи и измере­ния расстояний с большой точностью. Особое место занимает «ла­зерная технология» как группа процессов, использующих мощное излучение лазера для нагрева, плавления, испарения, сварки и рез­ки материалов. Это направление начало развиваться с 60-х годов XX в., и в настоящее время лазер рассматривают как один из наи­более перспективных лучевых источников энергии.

В некоторых областях технологического применения с лазером конкурируют электронный луч и полихроматические источники света, что связано прежде всего с более простым в изготовлении и эксплуатации оборудованием для осуществления процессов, в ко­торых используются эти источники.

3.2.1. Полихроматический свет

Обычное световое излучение часто называют полихромати­ческим светом, так как оно состоит из целого ряда электромагнит­ных волн различной длины, лежащих в видимой области оптиче­ского диапазона спектра электромагнитного излучения. Этот диа­пазон условно делится на различные области, границы которых Приведены в табл. 3.1.

Полихроматическое излучение обычно возникает в результате нагрева тел, когда возбуждаются составляющие их атомы и элек­троны. При переходе с дальних орбит на ближние они излучают электромагнитные колебания. Это излучение существует в виде отдельных квантов; энергия кванта

(3.10)

где h = 6,625 • 10-34 Дж- с - постоянная Планка; v - частота коле­баний, является одной из основных характеристик кванта света -фотона.

В обычных условиях атомы вещества излучают одновременно кванты различной энергии, так как переход электронов с одних орбит на другие не носит организованного характера, что и приво­дит к полихроматичности излучения. В зависимости от температу­ры тела изменяется его энергетическая светимость (она по закону Стефана - Больцмана пропорциональна четвертой степени абсо­лютной температуры тела: R = σT ) и по мере увеличения темпе­ратуры спектральный максимум излучения сдвигается в сторону уменьшения длины волны.

Поскольку применение энергии света для тех или иных техно­логических процессов связано с фокусировкой луча, полихроматичность играет в данном случае отрицательную роль. Полихро­матический свет при прохождении через линзу фокусируется в виде пятна довольно значительных размеров, так как волны раз личной длины по-разному преломляются при прохождении через стекло. Это явление носит название хроматической аберрации и значительно ограничивает возможности обычных полихроматиче­ских источников.

По законам дифракции наименьший размер сфокусированного пятна равен длине волны X и для оптического диапазона состав­ляет ≈ 1 мкм. Полихроматичность увеличивает этот размер до сотен и тысяч микрометров, в результате чего максимальная плот­ность мощности в пятне нагрева в данном случае не превышает 3 кВт/см2 , что соизмеримо с нагревом пламенем горелки и на 4-6 порядков меньше, чем для монохроматического луча лазера. Кроме того, фокусировка ухудшается в связи с тем, что геометри­ческие параметры применяемых фокусирующих линз и зеркал со сферическими поверхностями имеют отклонения от значений, требуемых для точной фокусировки. Ухудшает фокусировку и то! что светящееся тело обычно имеет конечные размеры и проециру­ется в виде определенной геометрической фигуры.

Вместе с тем простота использования света для нагрева опреде­ляет некоторые области его применения. Это прежде всего различ­ные солнечные печи и нагреватели, где при помощи специальных рефлекторов возможны нагрев и плавление различных материалов. Однако промышленного распространения эти установки не получи­ли. Более целесообразным в промышленности считается использо­вание не солнечной энергии, а специальных высокоинтенсивных источников полихроматического света типа ламп накаливания или дуговых (газоразрядных) ламп. Эти лампы выполняют в корпусах из плавленого термостойкого кварца - поэтому иногда их называют кварцевыми. Они предназначены для технологических целей, име­ют мощность до нескольких десятков кВт. Кварцевые лампы без всяких дополнительных систем фокусировки позволяют нагревать обрабатываемые детали до температур 600... 1200 К, а с системами Фокусировки - до 1800...2000 К, что вполне достаточно для плав­ления ряда материалов.

На практике в качестве источника энергии для светолучевой сварки и пайки используют сфокусированный полихроматический свет дуговых ксеноновых ламп. В качестве источника излучения используют дуговые ксеноновые лампы сверхвысокого давления ρл = 3,5...9,5 МПа) мощностью 3...10 кВт. Такого типа лампы имеют компактную светящуюся дугу с высокой яркостью 600... 1000 Мкд/м2 ) и дают непрерывный спектр излучения, близкий к солнечному, с диапазо­ном длин волн λ = 0,2...2,4 мкм, занимающий в оптическом диапа­зоне ультрафиолетовую, видимую и инфракрасную области в процент­ном соотношении 9:35:56. Модуль лучистого нагрева (рис. 3.3) пред­ставляет собой эллипсоидный от­ражатель 2, в одном из фокусов которого располагается источник излучения 1. Отражатели, выпол­ненные, как правило, из алюминие­вых сплавов, позволяют получать на обрабатываемой поверхности плотность мощности до 3 кВт/см2 при площади пятна нагрева в 2 фокусе 5... 10 мм2 с мощностью лучистого нагрева до 2 кВт. Таким оптическим источником теплоты вполне можно сваривать детали толщиной до 2 мм для большин­ства металлических материалов.

Если процесс идет в вакууме или другой газовой защитной среде, световое излучение вводят в камеру через специальный (обычно кварцевый) иллюминатор. Основными достоинствами такого вида нагрева считаются отсутствие силового контакта с из­делием и возможность плавного регулирования температуры.