Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТСП 11.doc
Скачиваний:
1735
Добавлен:
27.05.2015
Размер:
4.3 Mб
Скачать

2.10.2. Сварка под флюсом

Дуга под флюсом отличается от свободной (открытой) свароч­ной дуги в первую очередь тем, что газовый разряд происходит в пространстве, которое изолированно от окружающей среды рас­плавленным шлаком. Наличие газового пузыря обусловливает по­вышение давления в нем. Например, оно составляет около 3 кПа при токе ≈ 500 А.

Флюсовая защита позволяет значительно повысить по срав­нению со сваркой открытой дугой сварочные токиIсв (до 1000 А и более), а также мощность дуги и плотность тока jсв на электро­дах (до 200 А/мм и выше).

Высокая плотность тока, избыточное давление, некоторое шунтирование дуги флюсом и присутствие во флюсе ионизиру­ющих компонентов обеспечивают высокую устойчивость свароч­ного процесса. Практически отсутствует разбрызгивание металла, шов хорошо формируется.

Высокая плотность тока обусловливает возрастание вольтамперной характеристики дуги, что позволяет применять источники питания с жесткой или пологопадающей внешней характеристикой (рис. 2.49). Широко применяется по­дача электрода в дугу с постоянной скоростью, обеспечивающая саморе­гулирование процесса.

В отличие от ручной дуговой сварки (рис. 2.50) перенос металла в дуге под флюсом обычно мелкока­пельный - без коротких замыканий и пиков тока Iд и напряжения Uд. Размер капель тем мельче, чем больше плотность тока. Существен­ную роль играет перенос электрод­ного металла паром. Капли обычно пористые, их плотность равна 2.. .5 г/см3 вместо 7,8 г/см3 для стали.

Число мелких капель составляет 60...70 % общего числа капель. Температура дуги достигает 5000...7000 К. При сварке на пере­менном токе она колеблется в зависимости от изменения фазы ψ (рис. 2.51). Высокая устойчивость сварочного процесса позволяет в подавляющем большинстве случаев применять переменный ток, что связано с большей простотой и экономичностью сварочного оборудования. Различный теплоотвод с электрода и изделия обу­словливает некоторую асимметрию тока в дуге под флюсом. Од­нако вентильный эффект сравнительно мал и, как правило, специ­альных устройств для его устранения не требуется. Сварка под флюсом отличается высоким КПД (рис. 2.52), ее легко автомати­зировать, и поэтому она широко применяется в промышленности.

2.10.3. Металлические дуги в защитных газах и вакууме

Ме-дуга в защитных газах используется в основном для сварки малоуглеродистых и низколегированных сталей (в СО2, в смесях СО2 + Аr, СО2 + О2), а также алюминиевых сплавов и коррозион­но-стойких сталей (в Аr и в смеси Аr + Не) главным образом на постоянном токе обратной полярности при жесткой или полого-падающей внешней характеристике источников питания. Наи­большее применение ввиду своей экономичности получила меха­низированная сварка тонкой проволокой в среде углекислого газа. Оснащение установок для механизированной сварки импульсными приставками, используемыми для управляемого переноса металла, существенно расширяет область их применения.

Ме-дуга в вакууме (вакуумная дуга) горит обычно в парах ме­талла электрода и применяется главным образом для сварки на постоянном токе обратной полярности. Давление среды - от 1 Па и ниже. Безусловно, дуга в вакууме отличается по своим свойст­вам от дуги при атмосферном давлении. Плазму столба дуги уже нельзя рассматривать как термически равновесную, так как элек­тронная температура больше температуры газа Те > Tд. Термиче­ская ионизация в столбе дуги снижается, и ее роль в определенной степени компенсируется неупругими столкновениями.

В вакуумной дуге увеличивается катодное падение потенциала до 18...20 В и уменьшается градиент напряжения в столбе дуги по сравнению с атмосферными дугами с 2...4 до 0,2...0,4 В/мм, т. е. примерно в 10 раз (в воздухе Е = 1,5...2,0 В/мм; в среде СО2 Е = 3...4 В/мм). Столб вакуумных дуг обычно длиннее, что позво­ляет применять более узкую разделку кромок стыка. Анодное па­дение потенциала меняется мало.

Баланс энергии в вакуумной дуге (рис. 2.53) показывает, что часть энергии на анод переносится непосредственно с катода. Вследствие интенсивного выделения теплоты на аноде коэффици­ент наплавки растет до 35.. .40 г/(А • ч). Это почти в 2 раза больше, чем при сварке под флюсом. Стоимость сварки в вакууме оказыва­ется в ряде случаев ниже, чем в контролируемой атмосфере инерт­ного газа, а качество шва - достаточно высоким.