Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Калин Физическое материаловедение Том 5 2008

.pdf
Скачиваний:
1037
Добавлен:
16.08.2013
Размер:
8.51 Mб
Скачать

К внутренним факторам, приводящим к избытку свободной энергии и снижению стабильности системы, можно отнести неравномерное распределение компонентов в сплаве, пересыщение твердого раствора, наличие разнозеренной микроструктуры, наличие второй фазы, границ раздела фаз, зерен и субзерен, дефекты микроструктуры, остаточные напряжения и др.

С некоторой степенью условности, удобной для анализа процессов, избыток свободной энергии представляют в виде трех слагаемых: избытка химической энергии, поверхностной энергии и энергии деформации, т.е.

G = Gхим + Gпов + Gдеф. (19.2)

В качестве химической составляющей изменения свободной энергии при изменении температуры можно рассмотреть процесс плавления или кристаллизации, при этом значение скрытой теплоты плавления, например меди, составляет Н = 13 кДж/моль, так что изменение G при кристаллизации лежит в пределах от нуля при Т = 1356 К до максимального значения –13 кДж/моль при температуре, приближающейся к абсолютному нулю. Полиморфные превращения в твердом состоянии (например, в железе при 1183 К и в олове при 291 К) идут при меньших значениях теплот превращения: 0,9 и 2,2 кДж/моль соответственно. При гомогенизации твердого (идеального) раствора изменение свободной энергии описывается известной формулой

G RT СА ln СA (1 СА) ln(1 CА) ,

(19.3)

где CA – концентрация компонента A в твердом растворе. Экстремальное значение этого изменения должно быть равно

значению, получаемому при образовании эквиатомного раствора (СА = 0,5) путем взаимной диффузии компонентов. При таких условиях значение Gхим составило бы –0,7RT, что при 1000 К дает –5,7 кДж/моль. Изменение свободной энергии при типичной реакции образования второй фазы примерно равно –1250 Дж/моль. Таким образом, химическая составляющая изменения свободной энергии имеет величины порядка 1 кДж/моль.

Типичные величины «поверхностной» и «деформационной» составляющих изменения свободной энергии значительно меньше химической части. Например, при увеличении деформации меди от 10 до 120 % запасенная энергия в металле с исходным зерном 30

311

мкм возрастает от 10,5 до 50,6 Дж/моль. Изменение свободной энергии при увеличении размера мелкодисперсных выделений (снижении площади межфазной поверхности) составляет порядка 20 Дж/моль.

Таким образом, движущие силы, вызванные деформациями или межфазными поверхностями, имеют в целом небольшие значения по сравнению с возникающими за счет химической свободной

энергии, т.е. Gхим >> Gдеф Gпов.

Под внешними факторами, приводящими к избытку составляющих свободной энергии (19.2), понимают действующие на твердое тело тепловые потоки (рост температуры), внешнее давление, воздействие среды и внешних физических полей, включая облучение материала, действие электромагнитных полей и др. Внешние факторы, кроме того, могут стимулировать эволюцию СФС, например, при нагревании, и в направлении уменьшения избытка свободной энергии системы: G min.

19.3. Основные механизмы изменения структурно-фазового состояния

Основным процессом, определяющим все изменения СФС, является активированная миграция атомов как внутри твердых фаз, так и на поверхностях раздела между кристаллитами и фазами. Миграция атомов, находящихся у поверхности раздела, может происходить либо непосредственно по этой поверхности (поверхностная диффузия), либо через эту поверхность, вызывая ее перемещение в противоположном направлении. Это – некоординированное (неупорядоченное) перемещение атомов. Единственным фазовым превращением, при котором поверхность раздела перемещается в результате координированного движения атомов, является образование мартенсита.

Необходимо напомнить, что миграция межфазных границ, осуществляемая за счет диффузии атомов, существенно зависит от их строения. Например, когерентные и полукогерентные поверхности раздела могут тормозить движение атомов. Хорошее соответствие кристаллических решеток контактирующих фаз и, следовательно, низкое значение энергии когерентной поверхности раздела может

312

затруднить прохождение атомов через эту поверхность. Границы фаз (двойниковые границы), обладающие очень низкой энергией, не только почти лишены способности мигрировать за счет хаотических перескоков активированных атомов, но и препятствуют диффузии атомов по ним.

Интересен механизм роста фаз, имеющих состав, отличный от состава матрицы. Продвижение межфазной границы в этом случае будет контролироваться не только диффузией атомов, но и их химическим взаимодействием, накладывающим ограничение на перемещение поверхности раздела. Однако и в этом случае важную роль играет строение межфазной границы. Рассмотрим два предельных случая.

Впервом случае – межфазная граница подобна большеугловой границе между зернами. Атомы контактирующих фаз достаточно легко мигрируют из одной решетки в другую. Это означает возможность диффузии атомов по границам зерен и перемещения самих границ с меньшей энергией активации, чем при диффузии атомов в решетках обоих фаз.

Второй предельный вариант строения границы раздела характеризуется полной когерентностью обеих фаз А и В, например имеющих одинаковые ГЦК кристаллические решетки. Тогда разница между структурами определяется их химическим составом. В этом случае миграция поверхности раздела должна происходить путем замены слоя, например, атомов В атомами А, продиффундированными к границе из областей решетки, обогащенных атомами В. В этом случае нет необходимости в какой-либо дополнительной реакции на поверхности раздела. Таким образом образуются зоны Гинье–Престона в медно-кобальтовых сплавах, кинетика роста которых описывается объемной диффузией атомов в богатой медью матрице.

Втом случае, когда фазы имеют различную кристаллическую

структуру при когерентной границе, например ГЦК и ГПУ, перемещение границы раздела и рост одной из фаз возможен путем согла-

сованного перемещения атомов с участием частичных дислокаций. Таким образом, механизмами изменения СФС являются: объем-

ная и поверхностная диффузия атомов, согласованное (коллективное) движение атомов, например дислокаций, и переход атомов

313

через межфазную границу, представляющий собой комбинацию диффузии и химического взаимодействия атомов.

19.4. Нестабильность СФС, вызванная изменением химической составляющей свободной энергии

Здесь рассмотрены процессы изменения структурно-фазового состояния, протекающие при Gхим min.

19.4.1. Нестабильность, вызванная неравномерным распределением растворенных компонентов

Примером нестабильного СФС является неравномерное распределение растворенного компонента в фазе, которая во всех других отношениях является достаточно стабильной. Неравномерное распределение компонентов приводит к увеличению свободной энергии сплава. Гомогенизация должна снизить Gхим до стационарного значения со скоростью, зависящей от кинетики и термодинамики диффузии.

Термодинамика диффузии. Повышенное значение свободной энергии стимулирует диффузионные процессы, приводящие к той или иной степени гомогенизации1. Напомним, что в идеальном или сильно разбавленном твердом растворе при изменении распределения растворенного компонента внутренняя энергия U остается постоянной, в то время как конфигурационная энтропия S изменяется. Следовательно, будет изменяться и свободная энергия. При изменении концентрации атомов, например сорта А, в определенном направлении х, т.е. при градиенте компонента А, равном dCA/dx, для разбавленных сплавов диффузионный поток JA атомов в рассматриваемом направлении будет равен2:

JA = –DA (dCA/dx),

(19.4)

где DA – коэффициент диффузии, определяемый по формуле

 

DA = (1/2) b2 fA.

(19.5)

Здесь b – межплоскостное расстояние; fA – частота перескоков атомов А из одной плоскости в другую.

1Физическое материаловедение. Т. 1. – М.: МИФИ, 2007. С. 421.

2Там же, с. 481.

314

Если сплав нельзя рассматривать как разбавленный твердый раствор, то энергия атомов, находящихся на соседних плоскостях, например 1 и 2, может отличаться на величину U, в результате чего частота перескоков атомов от плоскости 1 к плоскости 2 будет

больше частоты перескоков в обратном направлении:

 

f1 2 = exp (–UD/kT);

(19.6)

f2 1 = exp [–(UD + U)/kT],

(19.7)

где – частота колебаний атомов в решетке.

 

Это изменение частоты перескоков атомов сильно влияет на коэффициенты диффузии и даже может изменять направление диффузии.

Коэффициенты диффузии можно определить, используя представления о химическом потенциале (парциальной молярной сво-

бодной энергии):

 

( G / nA )T ,P,Ca ,

(19.8)

где nA – число грамм-молей компонента А в бинарном сплаве. Скорость диффундирующего атома A по Даркену и Гурри про-

порциональна градиенту химического потенциала:

uA A ,

(19.9)

где A – постоянная, обозначающая подвижность атомов А.

Поток атомов А равен произведению скорости диффузии и концентрации атомов компонента А:

JA CAuA CA A ( GA / xA ) .

(19.10)

Сопоставление уравнений (19.4) и (19.10) показывает, что коэффициент диффузии можно представить в виде:

DA = CA A (∂GА / ∂CA) = A (∂GА / ∂lnNA), (19.11)

где NA – молярная доля компонента А, равная отношению СА к общему числу молей в единице объема.

Учитывая, что активность аА и коэффициент активности А связаны с химическим потенциалом уравнением

А 0А = RT lnaA = RTlnNA + RT ln A,

(19.12)

где 0А – химический потенциал чистого компонента А (константа),

то коэффициент диффузии компонента А будет равен

 

DA = A RT (1 + ∂ln А / ∂lnNA).

(19.13)

315

Для бинарного сплава коэффициент взаимной диффузии при гомогенизации

D NADA + NBDB.

(19.14)

В целом из приведенных оценок следует [см. уравнение (19.13)], что диффузия в сплаве, содержащем значительное количество растворенного компонента, контролируется двумя факторами: вопервых, парциальной подвижностью атомов, которая обычно определяется концентрацией и подвижностью вакансий, и, во-вторых, термодинамическими параметрами раствора. Термодинамические факторы могут как ускорять, так и замедлять диффузию по сравнению с разбавленными (идеальными) растворами, а при определенных условиях может даже изменять направление диффузии на обратное, приводя к расслоению раствора.

Внутрикристаллитная ликвация и междендритная сегрега-

ция атомов. Наиболее распространенной причиной неоднородно-

сти твердого раствора является внутрикристаллитная ликвация, возникающая при затвердевании сплава. Как видно на рис.19.2, а, состав первых кристаллитов (С1) существенно отличается от состава последних (С0), т.е. С1 < С0. Практически любой сплав при реальной кристаллизации в интервале температур образует твердую фазу, состав которой изменяется в известных пределах1. Возможное распределение компонента В по длине зерна показано на рис. 19.2, б. На периферийной части зерна концентрация может быть больше, чем в центральной, поэтому это явление называют «внутрикристаллитная ликвация».

Другой термин «междендритная сегрегация»2 описывает сегрегацию примесных элементов при дендритном затвердевании. Дендритная кристаллизация характерна для всех сплавов, затвердевание которых происходит в отсутствии наложенного температурного градиента, и обнаруживается в большинстве слитков и отливок. Важным следствием такого дендритного строения является наличие периодической сегрегации с расстоянием, равным расстоянию между осями дендритов.

1Физическое материаловедение. Т. 2. – М.: МИФИ, 2007. С. 379.

2Там же, с. 402.

316

T

СВ

С0

L

А С1

С0

В

 

а

б

Рис. 19.2. Изменение состава кристаллов (а) и распределение компонента В по длине слитка L при затвердевании бинарного сплава (б)

Периодичность сегрегации (расстояние между осями дендритов) наряду с коэффициентом диффузии представляет собой наиболее важный фактор, определяющий кинетику гомогенизации твердого раствора при внутрикристаллитной ликвации, поскольку именно на это расстояние должны продиффундировать атомы сплава. Известно эмпирическое соотношение, связывающее расстояние d между осями дендритов со временем tS, в течение которого сплав при охлаждении продолжает оставаться в температурной области между ликвидусом и солидусом:

d d0tSn .

(19.15)

Показатель степени n в этом уравнении находится в пределах от

0,3 до 0,6.

Устранение ликваций и сегрегаций возможно в результате гомогенизирующего отжига. Для рассмотрения возникающих при этом проблем представим себе распределение компонента В в виде периодической функции (рис. 19.3):

C(x) = C0 + Cа cos (2 x/d),

(19.16)

где С0 – средняя концентрация.

Рис. 19.3. Распределение компонента В в бинарном сплаве АВ

при междендритной сегрегации (Са – амплитуда изменения концентрации; d – расстояние между осями дендритов)

317

Гомогенизация – процесс выравнивания концентрации в результате диффузии компонента В на расстояние d. Для оценки времени гомогенизации можно использовать известное соотношение между

расстоянием, коэффициентом диффузии и временем d Dt . Расчет показывает, что при расстоянии между ветвями дендритов d 1 мм и типичном значении коэффициента диффузии D 10–12 м2/с время гомогенизирующего отжига должно быть t 107 с (несколько месяцев). Это очень большое время, нереализуемое на практике.

Для устранения таких междендритных сегрегаций применяют ряд технологических приемов. Например, проводят непрерывную разливку расплава – тиксолитье или реалитье, в процессе которых дендриты разрушаются и вместе с ними уменьшаются сегрегации.

Для разрушения и измельчения литой структуры применяют механическую обработку с последующим гомогенизирующим отжигом. Сильная пластическая деформация приводит к существенному уменьшению расстояния d, характеризующего неоднородность распределения сегрегированного компонента. Но процесс гомогенизации зависит от схемы деформации. При одноосном деформировании диффузионный путь в направлении растяжения может увеличиться, а это увеличит время гомогенизации сплава.

Расстояние d можно уменьшить за счет экструзии – все расстояния между скоплениями компонентов уменьшаются в R раз, поэтому продолжительность гомогенизирующего отжига сокращается в R2 раз, и распределение компонентов становится более однородным.

В процессе гомогенизации сплавов еще много не изученных моментов. Например, известно, что деформирование ускоряет ликвидацию сегрегаций фосфора в сталях, но практически не влияет на выравнивание концентрации никеля и хрома в стальных отливках.

Гомогенизация в порошковых компактах имеет свои особенности и зависит опять же от схемы пластической деформации. Одно-, двух- и трехосная схемы деформирования создают различные пути диффузии компонентов вследствие изменения геометрии образца, что осложняет гомогенизацию. Меньшая гомогенизация, наблюдаемая при большой деформации и длительном отжиге, возникает по той причине, что диффузия по направлениям, длина которых в результате деформации существенно уменьшилась, оказывается

318

почти завершенной, тогда как диффузия по направлениям, существенно удлинившимся после деформирования, практически не повлияла на степень неоднородности.

В крупных стальных слитках нередко в процессе деформирования возникают слоистые структуры из чередующихся слоев феррита и перлита. Это обусловлено влиянием легирующих добавок, изменяющих температуру фазового превращения аустенита в феррит. Установлено, что области с низким содержанием аустенитостабилизирующих компонентов, например марганца, при медленном охлаждении будут раньше превращаться в феррит и отдавать свой избыточный углерод областям с более высоким содержанием марганца, сохраняющим еще структуру аустенита. В процессе дальнейшего охлаждения содержание углерода в этих обогащенных марганцем областях все более увеличивается, пока в результате эвтэктоидного превращения не образуется структура перлита.

При высоких скоростях охлаждения неоднородного слитка слоистая структура при деформации может не образоваться, но сохраняется потенциальная возможность ее возникновения при последующей термообработке. Для устранения слоистой структуры при деформации низколегированной стали с выраженной сегрегацией рекомендуется проводить кратковременный высокотемпературный отжиг слитка (1350 С, 10 мин).

Основным положительным итогом гомогенизирующего отжига является улучшение механических свойств сплавов вследствие устранения сегрегаций.

19.4.2. Распад пересыщенного твердого раствора

Пересыщенный твердый раствор обладает избытком свободной энергии, и при нагревании происходит распад твердого раствора, сопровождаемый Gхим min. Напомним, что движущей силой распада является избыток свободной энергии, а кинетика процесса распада зависит от градиента химического потенциала системы1. Распад твердых растворов приводит к образованию двухфазной структуры, относительно более стабильной, чем пересыщенный

1 Физическое материаловедение. Т. 1. – М.: МИФИ, 2007. С. 482.

319

твердый раствор. Гиббс установил существование двух типов распада твердых растворов1: спинодальный распад и распад по механизму зарождения и роста частиц второй фазы.

Спинодальным называется распад, при котором присущая сплаву нестабильность за счет малых флуктуаций состава приводит к спонтанному распаду раствора. Изменение свободной энергии гомогенной фазы бинарного сплава АВ в зависимости от состава показано на рис. 19.42.

Рис. 19.4. Изменение свободной энергии гомогенной фазы бинарного сплава АВ в зависимости от состава (G1 – свободная энергия сплава состава С1; G2 – средняя свободная энергия при распаде сплава состава С1 на Са и Сb; G3 – средняя свободная энергия сплава АВ)

Гомогенная фаза состава С1 является метастабильной по отношению к фазам А и В в области составов между СА и СВ. Из рис. 19.4 видно, что распад метастабильного раствора состава С1 на смесь двух фаз составов СА и СВ является энергетически выгодным, так как сопровождается уменьшением свободной энергии.

На некоторой начальной стадии превращения выделяющиеся фазы могут иметь составы Са и Сb при средней энергии G2, которая всегда меньше G1. Таким образом, распад происходит при непрерывном уменьшении свободной энергии и не существует термодинамического барьера, препятствующего превращению. Характерной особенностью спинодального распада является то, что он происходит одновременно во всем объеме сплава. Системы, в которых наблюдали спинодальный распад, очень немногочисленны. Примером такой системы является Cu–Ni–Fe, в которой после превращения образуется структура из правильно расположенных квазисферических частиц, занимающих небольшую долю объема, и решетки стерженьковых выделений, располагающихся по направ-

1Физическое материаловедение. Т. 2. – М.: МИФИ, 2007. С. 161.

2Там же, рис. 4.32.

320