Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ермолаев Технологические процессы в машиностроении 2011

.pdf
Скачиваний:
234
Добавлен:
16.08.2013
Размер:
8.42 Mб
Скачать

ную печь, что предотвращает выход газов из доменной печи в атмосферу. Для равномерного распределения шихты в доменной печи малый конус и приемная воронка после очередной загрузки поворачиваются на угол, кратный 60°.

Рис. 2.1. Устройство доменной печи

При работе печи шихтовые материалы, проплавляясь, опускаются, а через загрузочное устройство в печь подаются новые порции шихты в таком количестве, чтобы весь полезный объем печи был заполнен.

21

Полезный объем печи – это объем, занимаемый шихтой от лещади до нижней кромки большого конуса засыпного аппарата при его опускании. Современные доменные печи имеют полезный объем 2000 –5000 м3. Полезная высота доменной печи достигает 35 м.

В верхней части горна находятся фурменные устройства 14, через которые в печь поступает нагретый воздух, необходимый для горения топлива. Воздух нагревают для уменьшения потерь теплоты и снижения расхода кокса. Воздух поступает в доменную печь из воздухонагревателя, внутри которого расположены камера сгорания и насадка. Насадка выложена из огнеупорных кирпичей так, что между ними образуются вертикальные каналы. В камеру сгорания к горелке подается очищенный от пыли доменный газ, который сгорает и образует горячие газы.

Газы, проходя через насадку, нагревают ее и удаляются через дымовую трубу. Затем подача газа к горелке прекращается, и через насадку пропускается воздух, подаваемый турбовоздуходувной машиной. Воздух, проходя через насадку, нагревается до температуры 1000–1200 °С и поступает к фурменному устройству 14, а оттуда через фурмы 2 в рабочее пространство. Доменная печь имеет несколько воздухонагревателей: в то время как в одних насадках нагревается, в других насадка отдает теплоту холодному воздуху, нагревая его. После охлаждения насадки воздухом нагреватели переключаются.

Физико-химические процессы доменной плавки. Условно про-

цессы, протекающие в доменной печи, разделяют на горение топлива; разложение компонентов шихты; восстановление железа; науглероживание железа; восстановление марганца, кремния, фосфора, серы; шлакообразование. Все эти процессы проходят в доменной печи одновременно, но с равной интенсивностью, при различных температурах и на разных уровнях.

Горение топлива. Вблизи фурм (см. рис. 2.1) углерод кокса, взаимодействуя с кислородом воздуха, сгорает. В результате горения выделяется теплота и образуется газовый поток, содержащий CO, СО2, N2, H2, CH4 и др. При этом в печи несколько выше уровня фурм развивается температура выше 2000 оС. Горячие газы, под-

22

нимаясь, отдают теплоту шыхтовым материалам и нагревают их, охлаждаясь до температуры 300–400 оС у колешника.

Восстановление железа в доменной печи. Шихта (агломерат,

кокс) опускается навстречу потоку газов, и при температуре 500– 570 °С начинается восстановление оксидов железа.

Разложение компонентов шихты происходит в зависимости от ее состава. Если в доменную печь подается офлюсованный агломерат, то эти процессы протекают при агломерации и в доменной печи почти не идут. При работе на шихте, содержащей флюсы и часть сырой руды, в верхней части доменной печи разрушаются гидраты оксидов железа и алюминия. Известняк флюса диссоциирует по реакции СаСО3 = СаО+СО2.

В результате взаимодействия оксидов железа с оксидом углерода и твердым углеродом кокса, а также с водородом происходит восстановление железа. Восстановление газами называют косвенным, а восстановление твердым углеродом – прямым. Реакции косвенного восстановления – экзотермические (сопровождаются выделением теплоты), они происходят главным образом в верхних горизонтах печи.

Реакции прямого восстановления – эндотермические (сопровождаются пoглощением теплоты), они протекают в нижней части доменной печи, где температура более высокая.

Восстановление железа из руды в доменной печи происходит по мере продвижения шихты вниз по шахте печи и повышения температуры в несколько стадий – от высшего оксида к низшему:

Fe2О3 → Fe3O4 → FeO → Fe.

Восстановление железа заканчивается при 1100–1200 °С. В доменной печи железо восстанавливается почти полностью. Потери со шлаком составляют не более 1 %.

Науглероживание железа. Восстановление железа начинается в верхней части шахты доменной печи при 500–570 °С и заканчивается в распаре при 1100–1200 °С. При этих температурах восстановленное железо с Тпл = 1539 °С (находится в твердом состоянии или в виде губчатой массы. Однако уже в шахте доменной печи наряду с восстановлением железа происходит и его науглероживание при взаимодействии с оксидом углерода, коксом, сажистым

23

углеродом. Это приводит к образованию жидкого расплава, который каплями начинает стекать в горн. Протекая по кускам кокса, капли насыщаются углеродом (4 % и более), марганцем, кремнием, фосфором, которые при температуре 1000–1200 °С восстанавливаются из руды, а также серой, содержащейся в коксе.

Марганец в доменную печь вносится в виде оксидов железной, марганцевой рудами или агломератом и восстанавливается в шахте по реакции, аналогичной восстановлению оксидов железа:

МnО2 → Мn2O3 → Мn4O3 → МnО.

Оксид марганца (МnО) восстанавливается только твердым углеродом с образованием карбида марганца (Mn3C) при температуре не ниже 1100 °С. Карбид марганца растворяется в железе, повышая содержание марганца и углерода в чугуне. Другая часть МnО входит в состав шлака.

Кремний, содержащийся в руде в виде SiO2, также частично восстанавливается твердым углеродом и растворяется в железе. Другая часть SiО2 переходит в шлак. Кремний восстанавливается при температурах не ниже 1450 °С.

Фосфор содержится в руде в виде соединений (FeO)3 * Р2О5, и

(СаО)3 * Р2О5. При

температурах выше 1000 °С фосфат железа

восстанавливается

оксидом углерода и твердым углеродом с об-

разованием фосфида железа. При температурах выше 1300 °С фосфор восстанавливается из фосфата кальция. Фосфор и фосфид железа Fe3P полностью растворяются в железе.

Сера присутствует в коксе и руде в виде органической серы и соединений FeS2, FeS, CaSO4. Сера летуча, и поэтому часть ее удаляется с газом при нагреве шихты в печи, а часть – в виде серы и FeS растворяется в чугуне. Вследствие реакции

FeS – СаО = СaS + FeO

часть серы в виде СaS удаляется в шлак. Фосфор и сера в чугуне являются вредными примесями.

Таким образом, в результате процесса восстановления оксидов железа, части оксидов марганца и кремния, фосфатов и сернистых соединений, растворения в железе С, Mn, Si, P, S в доменной печи образуется чугун.

24

Образование шлака. Шлакообразование активно происходит в распаре после окончания процессов восстановления железа путем сплавления флюсов, добавляемых в доменную печь для обеспечения достаточной жидкотекучести при температуре 1400–1450 °С, оксидов пустой породы и золы кокса. Основные составляющие доменного шлака: оксиды кремния (30–45 %), оксиды кальция (40– 50 %), оксид алюминия (10–25 %) и другие компоненты. Шлак стекает в горн и скапливается на поверхности жидкого чугуна благодаря меньшей плотности.

Чугун выпускают из печи каждые 3–4 ч, а шлак – через 1–1,5 ч. Чугун выпускают через чугунную летку 16 ( см. рис. 2.1) – отверстие в кладке, расположенное несколько выше лещади, а шлак через – шлаковую летку 17. Чугунную летку открывают бурильной машиной, после выпуска чугуна ее закрывают огнеупорной массой. Чугун и шлак сливают в чугуноновозные ковши и шлаковозные чаши. Жидкий чугун транспортируют в кислородно-конвертерные или мартеновские цехи для передела в сталь. Чугун, не используемый в жидком виде, разливают в изложницы разливочной машины, где он затвердевает в виде чушек – слитков массой 45 кг.

Продукты доменной плавки. Чугун основной продукт доменной плавки. В доменных печах получают чугун различного химического состава в зависимости от его назначения.

Передельный чугун выплавляют для передела его в сталь в конвертерах или мартеновских печах. Он содержит 4–4,4 % С, 0,6–0,8 % Si, 0,25–1,5 % Мn, 0,15–0,3 % Р и 0,03– 0,07 % S.

Литейный чугун используют на машиностроительных заводах при производстве фасонных отливок. Он содержит 2,75–3,25 % Si. Кроме чугуна, в доменной печи выплавляют ферросплавы, доменные сплавы железа с кремнием, марганцем и другими элементами. Их применяют для раскисления и легирования стали. К ним относятся ферросилиций (9–13 % Si и до 3 % Мn), ферромарганец (70– 75 % Мn и до 2 % Si), зеркальный чугун (10–25 % Мn и до 2 % Si).

Побочные продукты доменной плавки – шлак и доменный газ. Из шлака изготовляют шлаковату, цемент, шлакоситаллы, а доменный газ после очистки используют как топливо для нагрева воздуха, вдуваемого в доменную печь.

25

Технико-экономические показатели работы доменной печи. Ос-

новным показателем работы доменной печи принято считать: коэффициент использования полезного объема доменной печи (КИПО) – это отношение полезного объема доменной печи V 3) к ее среднесуточной производительности Р (т) выплавленного чугуна: КИПО = V/Р. Чем меньше КИПО, тем выше производительность доменной печи. В современных доменных печах КИПО не превышает 0,6.

Другим важным показателем работы доменной печи является удельный расход кокса (К) – отношение расхода кокса (А) за сутки к количеству чугуна (Р), выплавленного за это же время: К = А/Р. Удельный расход кокса составляет 0,5–0,7. Кроме того, эффективность работы доменной печи характеризуется пребыванием шихты в доменной печи (5–6 ч) и длительностью кампании (4–5 лет и более непрерывной работы).

Эти показатели являются обобщенными: они зависят от доли агломерата и окатышей в шихте, качества кокса, расхода природного газа, температуры дутья и содержания в нем кислорода, качества огнеупоров и других факторов.

2.2. Производство стали

Сущность процесса получения сталей. Сталь является основ-

ным видом металла, применяемым для создания современной техники. Это объясняется тем, что сталь обладает высокими прочностью и износостойкостью, хорошо сохраняет приданную форму в изделиях, сравнительно легко поддается различным видам обработки. Кроме того, основной компонент стали – железо – является широко распространенным элементом в земной коре.

Основными материалами для производства стали являются передельный чугун и стальной лом (скрап). Содержание углерода и примесей в стали значительно ниже, чем в чугуне.

Сущностью любого металлургического передела чугуна в сталь является снижение содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы. В процессе плавки стали происходит взаимодействие между металлической,

26

шлаковой и газовой фазами и футеровкой плавильного агрегата, различными по агрегатному состоянию и химическому составу. В результате этого взаимодействия осуществляется переход химических элементов из одной фазы в другую. Обменные процессы сопровождаются химическими превращениями главным образом на границе металлической фазы со шлаком. Металлическая фаза состоит из расплава химических элементов, шлаковая – из расплава оксидов и их соединений. Поэтому переход элемента из одной фазы в другую возможен только при протекании химической реакции образования или восстановления оксида. Так как примеси по своим физико-химическим свойствам различны, то для их удаления в плавильном агрегате создают определенные условия, используя основные законы физической химии.

В соответствии с законом действующих масс скорость химических реакций пропорциональна концентрации реагирующих веществ. Поскольку в наибольшем количестве в чугуне содержится железо, то оно окисляется, в первую очередь, при взаимодействии чугуна с кислородом в сталеплавильной печи:

Fe + 1/2О2 = FеО + QкДж. (1)

Одновременно с железом окисляются Si, Р, С, Мn и др. Образующийся оксид железа при высоких температурах отдает

свой кислород более активным элементам – примесям в чугуне, окисляя их:

2FeO + Si = SiO + 2Fe + Q1 кДж;

(2)

5FeO + 2Р = Р2O5 + 5Fe + Q2 кДж;

(3)

FeO + Мn = МnО * Fe + Q3 кДж;

(4)

FeO + С = СО + Fe – Q4 кДж.

(5)

Чем больше оксида железа содержится в жидком металле, тем активнее окисляются примеси. Для ускорения окисления примесей в сталеплавильную ванну добавляют железную руду, окалину, содержащие много оксидов железа. Таким образом, основное количество примесей окисляется за счет кислорода оксида железа.

Скорость окисления примесей зависит не только от их концентрации, но и от температуры металла, и подчиняется принципу Ле Шителье. В соответствии с этим принципом химические реакции, выделяющие теплоту, протекают интенсивнее при более низких

27

температурах или при некотором понижении температуры, а реакции, поглощающие теплоту, протекают активнее при высоких температурах или при некотором повышении температуры. Поэтому в начале плавки, когда температура металла невысока, интенсивнее идут процессы окисления кремния, фосфора, марганца, протекающие с выделением теплоты, а углерод интенсивно окисляется только при высокой температуре металла (в середине и конце плавки).

После расплавления шихты в сталеплавильной печи образуются две несмешивающиеся среды: жидкий металл и шлак. Шлак представляет собой сплав оксидов с незначительным содержанием сульфидов. Образование шлака связано с окислением элементов металлической фазы во время плавки и образованием различных оксидов с меньшей плотностью, чем металл, собирающихся на его поверхности. В соответствии с законом распределения (закон Нернста), если какое-либо вещество растворяется в двух соприкасающихся, но несмешивающихся жидкостях, то распределение вещества между этими жидкостями происходит до установления определенного соотношения (константы распределения), постоянного для данной температуры. Поэтому большинство компонентов (Мn, Si, P, S) и их соединения, растворимые в жидком металле и шлаке, будут распределяться между металлом и шлаком в определенном соотношении, характерном для данной температуры.

Нерастворимые соединения в зависимости от плотности будут переходить либо в шлак, либо в металл. Изменяя состав шлака, можно менять соотношение между количеством примесей в металле и шлаке так, что нежелательные примеси будут удаляться из металла в шлак. Убирая шлак с поверхности металла и наводя новый путем подачи флюса требуемого состава, можно удалять вредные примеси (серу, фосфор) из металла. Поэтому регулирование состава шлака с помощью флюсов является одним из основных путей управления металлургическими процессами.

Используя изложенные законы, процессы выплавки стали осуществляют в несколько этапов.

Первый этап – расплавление шихты и нагрев ванны жидкого металла. На этом этапе температура металла невысока; интенсивно происходят окисление железа, образование оксида железа и окис-

28

ление примесей Si, Р, Мn по реакциям (1)–(4). Наиболее важная задача этого процесса – удаление фосфора (одной из вредных примесей в стали). Для этого необходимо проведение плавки в основной печи, в которой можно использовать основной шлак, содержащий СаО.

Второй этап – «кипение» металлической ванны – начинается по мере ее прогрева до более высоких, чем на первом этапе температур. При повышении температуры металла в соответствии с принципом Ле Шателье более интенсивно протекает реакция (5) окисления углерода, происходящая с поглощением теплоты. Поскольку в металле содержится больше углерода, чем других примесей, то в соответствии с законом действующих масс для окисления углерода в металл вводят незначительное количество руды, окалины или вдувают кислород.

Образующийся в металле оксид железа реагирует с углеродом по реакции (5), а пузырьки оксида углерода СО выделяются из жидкого металла, вызывая «кипение» ванны. При «кипении» уменьшается содержание углерода в металле до требуемого, выравнивается температура по объему ванны, частично удаляются неметаллические включения, прилипающие к всплывающим пузырькам СО, а также газы, проникающие в пузырьки СО. Все это способствует повышению качества металла. Поэтому этап «кипения» ванны является основным в процессе выплавки стали.

В этот же период создаются условия для удаления серы из металла. Сера в стали находится в виде сульфида [FeS], который растворяется также в основном шлаке (FeS). Чем выше температура, тем большее количество FeS растворяется в шлаке, т.е. больше серы переходит из металла в шлак. Сульфид железа, растворенный в шлаке, взаимодействует с оксидом кальция, также растворенным в шлаке.

Третий этап (завершающий) – раскисление стали – заключается в восстановлении оксида железа, растворенного в жидком металле. При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород – вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах.

29

Сталь раскисляют двумя способами: осаждающим и диффузионным. Осаждающее раскисление осуществляют введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, алюминия), содержащих элементы Mn, Si, Аl и др., которые в данных условиях обладают большим сродством к кислороду, чем железо. В результате раскисления восстанавливается железо и образуются оксиды МnО, SiO2, Al2O3 и другие, которые имеют меньшую плотность, чем сталь, и удаляются в шлак. Однако часть их может остаться в стали, что понижает ее свойства.

Диффузионное раскисление осуществляют раскислением шлака. Ферромарганец, ферросилиций и другие раскислители в мелко размельченном виде загружают на поверхность шлака. Раскислители, восстанавливая оксид железа, уменьшают его содержание в шлаке. В соответствии с законом распределения оксид железа, растворенный в стали, начнет переходить в шлак. Образующиеся при таком способе раскисления оксиды остаются в шлаке, а восстановленное железо переходит в сталь, что уменьшает содержание в ней неметаллических включений и повышает ее качество. В зависимости от степени раскисленности выплавляют спокойные, кипящие и полуспокойные стали.

Спокойная сталь получается при полном раскислении в печи и ковше.

Кипящая сталь раскисляется в печи не полностью. Ее раскисление продолжается в изложнице при затвердевании слитка благодаря взаимодействию FeO и углерода, содержащихся в металле. Образующийся при реакции FeO + С = Fe + СО оксид углерода выделяется из стали, способствуя удалению из стали азота и водорода. Газы выделяются в виде пузырьков, вызывая ее «кипение». Кипящая сталь не содержит неметаллических включений продуктов раскисления, поэтому обладает хорошей пластичностью.

Полуспокойная сталь имеет промежуточную раскисленность между спокойной и кипящей. Частично она раскисляется в печи и в ковше, а частично – в изложнице благодаря взаимодействию оксида железа и углерода, содержащихся в стали.

Легирование стали осуществляют введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирую-

30