Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Baer M., Billing G.D. (eds.) - The role of degenerate states in chemistry (Adv.Chem.Phys. special issue, Wiley, 2002)

.pdf
Скачиваний:
18
Добавлен:
15.08.2013
Размер:
4.29 Mб
Скачать

656

miljenko peric´ and sigrid d. peyerimhoff

89.R. Bartholomae, D. Martin, and B. T. Sutcliffe, J. Mol. Spectrosc. 87, 367 (1981).

90.B. T. Sutcliffe, Mol. Phys. 48, 561 (1983).

91.W. H. Green, Rr., N. C. Handy, P. J. Knowles, and S. Carter, J. Chem. Phys. 94, 118 (1991).

92.M. Brommer, G. Chambaud, E.-A. Reinsch, P. Rosmus, A. Spielfiedel, N. Feautrier, and H.-J. Werner, J. Chem. Phys. 94, 8070 (1991).

93.G. Chambaud and P. Rosmus, J. Chem. Phys. 96, 77 (1992).

94.M. Brommer, P. Rosmus, S. Carter, and N. C. Handy, Mol. Phys. 77, 549 (1992).

95.M. Brommer and P. Rosmus, J. Chem. Phys. 98, 7746 (1993).

96.B. Weis and K. Yamashita. J. Chem. Phys. 99, 9512 (1993).

97.W. Gabriel, G. Chambaud, P. Rosmus, S. Carter, and N. C. Handy, Mol. Phys. 81, 1445 (1994).

98.J. Persson, B. O. Roos, and S. Carter, Mol. Phys. 84, 619 (1995).

99.G. Chambaud, P. Rosmus, M. L. Senent, and P. Palmieri, Mol. Phys. 92, 399 (1997).

100.M. Hochlaf, G. Chambaud, and P. Rosmus, J. Chem. Phys. 108, 4047 (1998).

101.D. Panten, G. Chambaud, P. Rosmus, and P. J. Knowles, Chem. Phys. Lett. 311, 390 (1994).

102.P. Jensen, M. Brumm, W. P. Kraemer, and P. R. Bunker, J. Mol. Spectrosc. 171, 31 (1995).

103.P. Jensen, M. Brumm, W. P. Kraemer, and P. R. Bunker, J. Mol. Spectrosc. 172, 194 (1995).

104.M. Kolbuszewski, P. R. Bunker, W. P. Kraemer, G. Osmann, and P. Jensen, Mol. Phys. 88, 105 (1996).

105.G. Osmann, P. R. Bunker, P. Jensen, and W. P. Kraemer, Chem. Phys. Lett. 171, 31 (1995).

106.A. Carrington, A. R. Fabris, B. J. Howard, and N. J. D. Lucas, Mol. Phys. 20, 961 (1971).

107.P. S. H. Bolman, J. M. Brown, A. Carrinngton, A. Kopp, and D. A. Ramsay, Proc. R. Soc. London, Ser. A, 343, 17 (1975).

108.J. M. Brown, J. Mol. Spectrosc. 56, 159 (1975).

109.J. M. Brown M. Kaise, C. M. L. Kerr, and D. J. Milton, Mol. Phys. 36, 553 (1978).

110.J. M. Brown and F. Jørgensen, Mol. Phys. 47, 1065 (1982).

111.P. Crozet, A. J. Ross, R. Bacis, M. P. Barnes, and J. M. Brown, J. Mol. Spectrosc. 172, 43 (1995).

112.M. Peric´, R. J. Buenker, and S. D. Peyerimhoff, Can. J. Chem. 57, 2491 (1979) .

113.P. J. Bruna, G. Hirsch, M. Peri, S. D. Peyerimhoff, and R. J. Buenker, Mol. Phys. 40, 521 (1980).

114.H. Ko¨ppel, W. Domcke, and L. S. Cederbaum, J. Chem. Phys. 74, 2945 (1980).

115.S.-K. Shih, S. D. Peyerimhoff, and R. J. Buenker, J. Mol. Spectrosc. 64, 167 (1975); 74, 124 (1979).

116.P. G. Carrick, A. J. Merer, and R. F. Curl, J. Chem. Phys. 78, 3652 (1983); R. F. Curl, P. G. Carrick, and A. J. Merer, J. Chem. Phys. 82, 3479 (1985).

117.M. Peric´, S. D. Peyerimhoff, and R. Buenker, Z. Phys. D, 24, 177 (1992).

118.H. Thu¨mmel, M. Peric´, S. D. Peyerimhoff, and R. J. Buenker, Z. Phys. D, 13, 307 (1989).

119.M. Peric´, R. Buenker, and S. D. Peyerimhoff, Mol. Phys. 71, 673 (1990).

120.M. Peric´, S. D. Peyerimhoff, and R. Buenker, Mol. Phys. 71, 693 (1990).

121.M. Peric´, S. D. Peyerimhoff, and R. Buenker, J. Mol. Spectrosc. 148, 180 (1991).

122.M. Peric´, W. Reuter, and S. D. Peyerimhoff, J. Mol. Spectrosc. 148, 201 (1991).

123.M. Peric´, B. Engels, and S. D. Peyerimhoff, J. Mol. Spetrosc. 150, 56 (1991).

124.M. Peric´, B. Engels, and S. D. Peyerimhoff, J. Mol. Spetrosc. 150, 70 (1991).

125.C. Pfelzer, M. Havenith, M. Peric´, P. Mu¨rz, and W. Urban, J. Mol. Spectrosc. 176, 28 (1996).

renner–teller effect and spin–orbit coupling

657

126.C. Schmidt, M. Peric´, P. Mu¨rz , M. Wienkoop, M. Havenith, and W. Urban, J. Mol. Spectrosc. 190, 112 (1998).

127.Y.-C. Hsu, P.-R. Wang, M.-C. Yang, D. Papousek, Y.-J. Chen, and W.-Y. Chiang, Chem. Phys. Lett. 190, 507 (1992).

128.Y.-C. Hsu, J. J.-M. Lin, D. Papousek, and Y.-J. Tsai, J. Chem. Phys. 98, 6690 (1993).

129.D. Forney, M. E. Jacox, and W. E. Thompson, J. Mol. Spectrosc. 170, 178 (1995). 32H.

130.S. Carter, N. C. Handy, C. Puzzarini, R. Tarroni, and P. Palmieri, Mol. Phys. 98, 1697 (2000).

131.G. Herzberg, Discuss. Faraday Soc. 35, 7 (1963).

132.A. N. Petelin and A. A. Kiselev, Int. J. Quantum Chem. 6, 701 (1972).

133.R. Colin, M. Herman, and I. Kopp, Mol. Phys. 37, 1397 (1979).

134.M. Takahashi, M. Fujii, and M. Ito, J. Chem. Phys. 96, 6486 (1992).

135.Y. F. Zhu, R. Shedaded, and E. R. Grant, J. Chem. Phys. 99, 5723 (1993).

136.J. E. Reutt, L. S. Wang, J. E. Pollard, D. J. Trevor, Y. T. Lee, and D. A. Shirley, J. Chem. Phys. 84, 3022 (1986).

137.S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, J. Chem. Phys. 95, 6238 (1991).

138.S. T. Pratt, P. M. Dehmer, and J. L. Dehmer, J. Chem. Phys. 99, 6233 (1993).

139.J. Tang and S. Saito, J. Chem. Phys. 105, 8020 (1996).

140.M. Peric´, S. D. Peyerimhoff, and R. J. Buenker, Mol. Phys. 55, 1129 (1985).

141.M. Peric´, H. Thu¨mmel, C. M. Marian, and S. D. Peyerimhoff, J. Chem. Phys. 102, 7142 (1995).

142.M. Peric´, B. Engels, and S. D. Peyerimhoff, J. Mol. Spectrosc. 171, 494 (1995).

143.M. Peric´ and B. Engels, J. Mol. Spectrosc. 174, 334 (1995).

144.M. Peric´, B. Ostojic´, B. Scha¨fer, and B. Engels, Chem. Phys. 225, 63 (1997).

145.B. Scha¨fer, M. Peric´, and B. Engels, J. Chem. Phys. 110, 7802 (1999).

146.M. N. R. Ashfold, B. Tutcher, B. Yang, Z. K. Jin, and L. S. Anderson, J. Chem. Phys. 87, 5105 (1987).

147.M.-F. Jagod, M. Ro¨sslein, C. M. Gabrys, B. D. Rehfuss, F. Scappini, M. W. Crofton, and T. Oka, J. Chem. Phys. 97, 7111 (1992).

148.M. Peric´ and S. D. Peyerimhoff, J. Chem. Phys. 102, 3685 (1995).

149.M. Peric´, C. M. Marian, and B. Engels, Mol. Phys. 97, 731 (1966).

150.M. Peric´ and B. Ostojic´, Mol. Phys. 97, 743 (1966).

151.B. Scha¨fer-Bung, B. Engels, T. R. Taylor, D. M. Neumark, P. Botschwina, and M. Peric´, J. Chem. Phys. 115, 1777 (2001).

152.M. Peric´, C. M. Marian, and S. D. Peyerimhoff, J. Chem. Phys. 114, 6086 (1999).

153.M. Peric´, B. Ostojic´, and B. Engels, J. Chem. Phys. 105 , 8569 (1966).

154.M. Peric´ and S. D. Peyerimhoff, The Role of Rydberg States in Spectroscopy and Photochemistry, C. Sandorfy, ed., Kluwer Academic Publishers, Dordrecht/Boston/London, 1999, p. 137.

155.S. Carter and N. C. Handy, Mol. Phys. 53, 1033 (1984).

156.N. C. Handy, Mol. Phys. 61, 207 (1987).

157.M. J. Bramley, W. H. Green, Jr., and N. C. Handy, Mol. Phys. 73, 1183 (1991).

158.S. M. Colwell and N. C. Handy, Mol. Phys. 92, 317 (1997).

159.K. Sarka, J. Mol. Spectrosc. 38, 545 (1971).

160.P. R. Bunker, B. M. Landsberg, and B. P. Winnewisser, J. Mol. Spectrosc. 74, 9 (1979).

658

miljenko peric´ and sigrid d. peyerimhoff

161.S. L. N. G. Krishnamachari and T. V. Venkitachalam, Chem. Phys. Lett. 55, 116 (1978).

162.S. L. N. G. Krishnamachari and D. A. Ramsay, Discuss. Faraday Soc. 71, 205 (1981).

163.B. Coquart, Can. J. Phys. 63, 1362 (1985).

164.J. M. Vrtilek, C. A. Gottlieb, E. W. Gottlieb, W. Wang, and P. Thaddeus, Astrophys. J. Lett. 398, L73 (1992).

165.P. G. Szalay, J. Chem. Phys. 105, 2735 (1996).

166.J. D. Goddard, Chem. Phys. Lett. 154, 387 (1989).

167.P. G. Szalay and J.-P. Blaudeau, J. Chem. Phys. 106, 436 (1997).

168.C. Petrongolo, J. Chem. Phys. 89, 1297 (1988).

169.A. Aguilar, M. Gonzales, and L. Poluyanov, Mol. Phys. 72, 193 (1992); 77, 209 (1992); 81, 655 (1993).

170.M. Peric´ and S. D. Peyerimhoff, J. Mol. Spectrosc. (2002), in press.

171.M. Peric´ and S. D. Peyerimhoff, J. Mol. Spectrosc. (2002), in press.

The Role of Degenerate States in Chemistry: Advances in Chemical Physics, Volume 124.

Edited by Michael Baer and Gert Due Billing. Series Editors I. Prigogine and Stuart A. Rice. Copyright # 2002 John Wiley & Sons, Inc.

ISBNs: 0-471-43817-0 (Hardback); 0-471-43346-2 (Electronic)

PERMUTATIONAL SYMMETRY AND THE ROLE OF NUCLEAR SPIN IN THE VIBRATIONAL SPECTRA OF MOLECULES IN DOUBLY DEGENERATE ELECTRONIC STATES:

THE TRIMERS OF 2S ATOMS

A. J. C. VARANDAS and Z. R. XU

Departamento de Quı´mica, Universidade de Coimbra

Coimbra, Portugal

CONTENTS

I.Introduction

II. Total Molecular Wave Function III. Group Theoretical Considerations

IV. Permutational Symmetry of Total Wave Function V. Permutational Symmetry of Nuclear Spin Function

VI. Permutational Symmetry of Electronic Wave Function

VII. Permutational Symmetry of Rovibronic and Vibronic Wave Functions VIII. Permutational Symmetry of Rotational Wave Function

IX. Permutational Symmetry of Vibrational Wave Function

X.Case Studies: Li3 and Other 2S Systems

A.Potential Energy Surfaces

B.Static Jahn–Teller Effect

C.Dynamical Jahn–Teller and Geometric Phase Effects

D.Nonadiabatic Coupling Effects

E.Effects of Electron Spin and Nuclear Spin

F.Other Alkali Metal Trimers

G.1H3 and Its Isotopomers

XI. Concluding Remarks

Appendix A: GBO Approximation and Geometric Phase for a Model Two-Dimensional (2D) Hilbert Space

659

660

a. j. c. varandas and z. r. xu

Appendix B: Antilinear Operators and Their Properties

Appendix C: Proof of Eqs. (18) and (23)

Appendix D: Degenerate and Near-Degenerate Vibrational Levels

Appendix E: Adiabatic States in the Vicinity of a Conical Intersection

I.Jahn–Teller Theorem II. Invariant Operators

III. Functional Form of the Energy Acknowledgments

References

I.INTRODUCTION

The full quantum mechanical study of nuclear dynamics in molecules has received considerable attention in recent years. An important example of such developments is the work carried out on the prototypical systems H3 [1–5] and its isotopic variant HD2 [5–8], Li3 [9–12], Na3 [13,14], and HO2 [15–18]. In particular, for the alkali metal trimers, the possibility of a conical intersection between the two lowest doublet potential energy surfaces introduces a complication that makes their theoretical study fairly challenging. Thus, alkali metal trimers have recently emerged as ideal systems to study molecular vibronic dynamics, especially the so-called geometric phase (GP) effect [13,19,20] (often referred to as the molecular Aharonov–Bohm effect [19] or Berry’s phase effect [21]); for further discussion on this topic see [22–25], and references cited therein. The same features also turn out to be present in the case of HO2, and their exact treatment assumes even further complexity [18].

For Li3, Gerber and Schumacher [9] reported the lowest vibrational levels and showed that vibronic coupling is essential to describe the electronic ground state giving rise to the so-called dynamic Jahn–Teller effect. In turn, Mayer and Cederbaum [10] studied the rovibronic coupling in the electronic A system of Li3. Most recently, Kendrick [14] reported quantum mechanical calculations on the vibrational spectrum of Na3 using a generalized Born–Oppenheimer treatment. However, a question emerges when we carry out quantum mechanical calculations using a filter diagonalization [26] technique, namely, the efficient minimal residuals (MINRES) filter diagonalization method [11,27] hereafter referred to shortly as MFD. For example, for the vibrational states of the 1H3 electronic ground state, one may compute the full spectrum of the corresponding Hamiltonian, and hence, the problem arises of whether all calculated eigenfunctions are ‘‘true’’ physical molecular vibrational states. We will provide an answer to this question in the following sections of this chapter.

Symmetry considerations have long been known to be of fundamental importance for an understanding of molecular spectra, and generally molecular dynamics [28–30]. Since electrons and nuclei have distinct statistical properties, the total molecular wave function must satisfy appropriate symmetry

permutational symmetry and the role of nuclear spin

661

requirements. Thus, not all calculated states have to be physically acceptable states, and symmetry considerations may allow us to distinguish the ‘‘mathematical states’’ from the ‘‘physical states.’’ In this chapter, we discuss the permutational symmetries of the total wave function and its various components for a molecule under the permutation of identical particles. Double group theory will be used as a powerful tool to analyze the molecular states, and an extension of Kramers’ theorem [28,30] to its most general form presented. The significant role of nuclear spin will then be emphasized, and some severe consequences will be demonstrated. Thus, the material presented here may be helpful for a detailed understanding of molecular spectra and collisional dynamics.

II.TOTAL MOLECULAR WAVE FUNCTION

The molecular time-independent nonrelativistic Schro¨dinger equation assumes the form

^ ð 0 0 Þ ¼ ð 0 0 Þ ð Þ

H R ; i; r ; s E R ; i; r ; s 1

ð 0 0 Þ ^

where R ; i; r ; s is the total molecular wave function, H is the total molecular Hamiltonian operator, and E is the total energy; R0 and r0 stand collectively for the nuclear and electronic coordinates in the space-fixed (SF) frame, and i and s denote the corresponding nuclear and electronic spin coordinates. For a system consisting of N nuclei and n electrons, there are 3N nuclear spacial coordinates and 3n electronic ones. In the case of a triatomic molecule, the six nuclear coordinates relative to the center of mass consist of three internal and three external coordinates. The former may be taken as the hyperspherical coordinates [2,31–35] ðr; y; fÞ, while the external or orientational coordinates are chosen to be the usual Euler angles ða; b; gÞ [36]. As illustrated in Figure 1, these define the orientation of the body-fixed (BF) relative to the SF frames. In the following

sections, we will differentiate between these two types of coordinates by

0 ¼ ð ; ^Þ ¼ ðr; y; fÞ ^ ¼ ða; b; gÞ expressing R R R , where R and R .

In the strictest meaning, the total wave function cannot be separated since there are many kinds of interactions between the nuclear and electronic degrees of freedom (see later). However, for practical purposes, one can separate the total wave function partially or completely, depending on considerations relative to the magnitude of the various interactions. Owing to the uniformity and isotropy of space, the translational and rotational degrees of freedom of an isolated molecule can be described by cyclic coordinates, and can in principle be separated. Note that the separation of the rotational degrees of freedom is not trivial [37].

662

a. j. c. varandas and z. r. xu

Consider now the adiabatic approximation [38,39] to the solution of Schro¨dinger’s equation. Such an approximation is based on the fact that the nuclear masses are much larger than the electronic ones and therefore, on average, the nuclei move much more slowly than the electrons. The latter are thus able to follow the nuclear displacements: Their distribution in space is determined by the instantaneous nuclear configuration. To a first approximation, the nuclei may then be regarded as fixed. Accordingly, the total molecular wave function can be divided in two parts: one refers to the electronic wave function

ceðr; s; RÞ, the other to the nuclear wave function wnucðR0; iÞ. Regarding the nuclear wave function, it is possible to separate the translational part if the

interaction between the translational and the other (rotational and vibrational) nuclear degrees of freedom can be ignored. This case is typical in studies of spectroscopy and collisional dynamics where the measured properties depend on the motions of the interacting species relative to each other but not on the motion of the system as a whole (the space is assumed to be uniform and

Figure 1. The space-fixed (XYZ) and body-fixed (xyz) frames. Any rotation of the coordinate system (XYZ ) to (xyz) may be performed by three successive rotations, denoted by the Euler angles (a, b, g), about the coordinate axes as follows: (a) rotation about the Z axis through an angle að0 a < 2pÞ, (b) rotation about the new y1 axis through an angle bð0 b pÞ, (c) rotation about the new z2 axis through an angle gð0 g < 2pÞ. The relative orientations of the initial and final coordinate axes are shown in panel (d).

permutational symmetry and the role of nuclear spin

663

Figure 1 (Continued)

664

a. j. c. varandas and z. r. xu

Figure 1 (Continued)

isotropic). In this case, after separation of the center of mass motion,2 the total Hamiltonian operator can be written as

 

 

^

h2

 

 

2

^

 

ð2Þ

 

 

H ¼ 2m r

 

þ Heðr; s; RÞ

 

^

 

 

 

 

Hamiltonian2 that

depends parametrically

where Heðr; s; RÞ is the electronic

 

on the R coordinates. For a triatomic molecule, r is the Laplacian with respect

to the six nuclear coordinates R0;

m

is the three-body reduced mass

m ¼

ðmAmBmC=MÞ

1=2

; mA, mB, and mC

 

 

 

 

are the masses of nuclei A, B, and C; and

M ¼ mA þ mB þ mC. Note that we have separated the nuclear wave functions from the electronic wave functions, and also assumed that the electronic Hamiltonian is written in BF coordinates. Thus, the total molecular wave

function can be expanded in the form [39]

 

X

ð3Þ

ðR0; i; r; sÞ ¼ wnðR0; iÞcnðr; s; RÞ

n

 

2 The problem of separating the center-of-mass motion in a molecular system is an intricate one that has no implications in the present work; the interested reader is referred to [40] for details.

permutational symmetry and the role of nuclear spin

665

where wnðR0; iÞ are the nuclear wave functions, and cnðr; s; RÞ form a complete set of electronic wave functions in BF (the summation should in principle include an integration over the continuum) obtained by solving, for each set of nuclear positions R, the following eigenequation:

^

ð4Þ

Heðr; s; RÞcnðr; RÞ ¼ VnðRÞcnðr; s; RÞ

As usually indicated by the semicolon, both the wave functions and eigenvalues [VnðRÞ] depend parametrically on the internal nuclear coordinates.

Substitution of Eq. (3) into the molecular Schro¨dinger equation leads to a system of coupled equations in a coupled multistate electronic manifold

 

h2

r2 þ 2FðR0; iÞ r þ GðR0; iÞ þ VðRÞ wðR0; iÞ ¼ EwðR0; iÞ ð5Þ

2m

or, in compact form,

 

 

 

HðR0; iÞwðR0; iÞ ¼ EwðR0; iÞ

ð6Þ

where wðR0; iÞ is a column vector whose components are the nuclear wave functions wnðR0; iÞ and the matrix elements of FðR0; iÞ, GðR0; iÞ, and VðRÞ are given by

FmnðR0

; iÞ ¼ hcmðr; s; RÞjrcnðr; s; RÞi

ð7Þ

GmnðR0

; iÞ ¼ hcmðr; s; RÞjr2cnðr; s; RÞi

ð8Þ

 

^

ð9Þ

VmnðRÞ ¼ hcmðr; s; RÞjHeðr; s; RÞjcnðr; s; RÞi

where (and hereafter) the bra–ket notation hji is used to specify integration over the electronic coordinates r and s only, and r implies taking the gradient with respect to all the nuclear degrees of freedom. Note that the nonadiabatic coupling terms [of first-order, FmnðR0; iÞ, and second-order, GmnðR0; iÞ] couple the various electronically adiabatic states, and hence are responsible for electronically nonadiabatic transitions. Note further that in the adiabatic approximation, the matrix formed by the elements Vmn ¼ Vndmn is diagonal, whereas the matrix

C ¼

h2

ð10Þ

2m ½2FðR0; iÞ r þ GðR0; iÞ&

derived from the operator of kinetic energy of the nuclei is nondiagonal.

As is well known, perturbation theory for a single state is different from that for degenerate states. The former leads to the traditional adiabatic