Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТКМ_2 / Лекц / Лекции / 7РезФО1-04.doc
Скачиваний:
272
Добавлен:
21.04.2015
Размер:
2.09 Mб
Скачать

Обработка конических поверхностей

Обточку конических поверхностей можно осуществлять раз­личными способами в зависимости от величины конусности, от конфигурации и размеров обрабатываемой детали:

Поворотом верхних салазок суппорта (рис. 200, а). Салазки / верхнего суппорта поворачивают вокруг вертикальной оси суп­порта на угол конусности а.

Обточку конической поверхности осуществляют вручную пе­ремещением резца вдоль образующей конуса путем вращения махо­вичка 2. Этим способом обрабатывают как наружные, так и вну­тренние поверхности с любым углом конусности а с длиной обра­ботки меньше, чем величина хода верхних салазок суппорта.

Смещение корпуса задней бабки (рис. 200, б). Корпус задней бабки смещают в поперечном направлении относительно салазок на величину ft, в результате чего ось заготовки, установленной в центрах, образует с линией центров, а следовательно, с направ­лением продольной подачи суппорта угол конусности обрабаты­ваемой поверхности а. Образующая конической поверхности при такой установке располагается параллельно продольной подаче резца.

При длине конической поверхности / и длине заготовки L величину необходимого смещения корпуса задней бабки опре­деляют по формуле

h = L sin a.

Рис. 200. Схемы обработки конических поверхностей

При малых значениях a: sina≈tga, следовательно,

h = L tga = L ( Dd ) /2l

При l=L

Этот способ применяют для обточки пологих конических поверхностей (угол а не более 8°).

Недостаток этого способа состоит в том, что вследствие непра­вильного положения центровых отверстий обрабатываемой детали на центрах станка центровые отверстия детали и сами центра быстро изнашиваются.

Для изготовления точных конических поверхностей этот способ непригоден.

С помощью конусной или копировальной линейки (рис. 200, в). Конусная линейка / укрепляется с задней стороны станка на крон­штейнах 2. Линейка устанавливается под заданным углом а. На линейке свободно сидит ползушка 3, соединенная с попереч­ными салазками суппорта. Поперечные салазки суппорта предва­рительно отсоединяются от нижней каретки суппорта путем вывин­чивания поперечного ходового винта.

При продольном перемещении суппорта резец получает резуль­тирующее движение: наряду с продольным поперечное перемеще­ние, обусловленное движением ползушки 3 по линейке /. Резуль­тирующее движение направлено вдоль образующей конической поверхности.

Этот метод применяют для обточки конических поверхностей под углом до 12°.

С помощью широких фасонных резцов. Режущие лезвия резца устанавливают под углом конусности а обрабатываемой поверх­ности к линии центров станка параллельно образующей кониче­ской поверхности.

Обточку можно осуществлять как продольной, так и попереч­ной подачей.

Этот способ пригоден для обработки коротких наружных и внутренних конических поверхностей с длиной образующей не более 25 мм, так как при больших длинах образующей возникают вибрации, приводящие к получению обработанной поверхности низкого качества.

Обработка фасонных поверхностей

Короткие фасонные поверхности (длиной не более 25—30 мм) обрабатывают фасонными резцами: круглыми, призматическими и тангенциальными.

Точность обработки фасонных поверхностей призматическими круглыми фасонными резцами, работающими одной точкой по центру и с базой, параллельной оси детали, зависит от точности коррекционного расчета профиля инструмента по профилю детали (обычно точность коррекционного расчета составляет до 0,001 мм). Однако эта расчетная точность относится только к узловым точ­кам профиля резца.

На конусном участке обработанной детали будут криволиней­ные образующие с суммарной ошибкой Δ. Суммарная ошибка Δ складывается из двух составляющих Δ 1 и Δ 2. Ошибка Δ 1 при­суща фасонным резцам вследствие установки только одной точ­кой на высоте центра и расположения других точек ниже линии центра, что приводит к образованию на детали гиперболоида вместо цилиндра или конуса. Для устранения ошибки Δ 1 необхо­димо режущее лезвие всеми точками устанавливать по центру, т. е. в одной плоскости с осью детали.

Ошибка Δ 2 возникает только при работе круглыми резцами. Так, круглый резец для обработки конической поверхности пред­ставляет собой усеченный конус, пересеченный плоскостью (перед­няя поверхность), параллельной оси конуса, но не проходящей через ось. Поэтому лезвие резца имеет выпуклую гиперболиче­скую форму. Эта выпуклость и есть ошибка Δ 2. У призматиче­ского резца ошибка Δ 2 равна нулю. В среднем ошибка Δ 2 в 10 раз больше величины Δ 1. При высоких требованиях к точности обра­ботки следует применять призматические резцы.

Тангенциальные резцы применяют в основном при чистовой обработке длинных нежестких деталей, так как обработка проис­ходит не сразу по всей длине детали, а постепенно.

Длинные фасонные профили обрабатывают с помощью механи­ческих копировальных устройств, устанавливаемых с задней стороны станины на специальном кронштейне так же, как копирная линейка (рис. 200, в). В этих случаях копир имеет фасонный про­филь.

Механические копировальные устройства имеют такие недо­статки, как сложность изготовления термически обработанного копира, значительные усилия в месте контакта сухарика или ро­лика копировального устройства с рабочей поверхностью ко­пира.

Это привело к широкому распространению гидравлических и электромеханических копировальных устройств со следящим приводом.

В гидравлических копировальных устройствах в месте кон­такта рычажного наконечника и копира возникают незначитель­ные усилия, что позволяет изготавливать копир из мягких мате­риалов.

Гидравлические копировальные устройства обеспечивают точ­ность копирования от ±0,02 до ±0,05 мм. 284

Соседние файлы в папке Лекции