Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
l_stroimeh.doc
Скачиваний:
317
Добавлен:
12.04.2015
Размер:
2.96 Mб
Скачать

4. Матрица жесткости кэ

Известные в механике геометрические и физические соотношения для континуальных систем можно записать в виде, аналогичном рассмотренным ранее уравнениям дискретного подхода. Например,

для дискретной системы: для континуальной системы: ,,,.

Здесь и– вектора деформаций и напряжений, аи – матрицы равновесия и податливости континуальной системы. В отличие от дискретного подхода, уравнения континуального подхода удовлетворяются во всех точках системы.

При рассмотрении конечного элемента как континуальной системы принцип Лагранжа можно записать в виде

,

где левая и правая части представляют возможные работы внутренних и внешних сил, а интегрирование ведется по объему КЭ V.

После этого осуществляется переход к дискретной модели КЭ с использованием матрицы форм H. Тогда после ряда преобразований получается матричное уравнение, связывающее вектор узловых перемещений u с вектором узловых усилий P КЭ:

,

в которой симметричная квадратная матрица

называется матрицей жесткости конечного элемента. Физический смысл элемента kij этой матрицы – это реакция (реактивная сила), возникающая в i-ом направлении от заданного единичного перемещения в j-ом направлении.

К примеру, для рассмотренного ферменного КЭ, находящегося в одноосном напряженном состоянии, геометрическое уравнение будет . Сравнив его с матричным уравнением, видим, что матрица равновесия является дифференциальным оператором с одним членом, т.е.. Из уравнения связи между деформацией и напряжениемвидно, что матрица податливости будет.

Для определения матрицы жесткости КЭ вычислим:

,

,.

Интегрирование по объему V сводится к интегрированию по длине l КЭ, т.к. (F − площадь сечения КЭ). Тогда

.

При рассмотрении прямоугольного КЭ толщиной t и размерами 2a и 2b с четырьмя узлами i, j, k, m и восемью узловыми перемещениями (рис. 14.4), матрица жесткости будет иметь размеры 8´8.

Рис. 14.4

Для краткости записи матрицу жесткости этого КЭ можно представить в блочной форме с 16 блоками одинаковой размерности 2´2:

.

Здесь μ – коэффициент Пуассона. Элементы каждого блока матрицы K определяются по разным формулам. Например,

.

В о п р о с ы

1. Какой из подходов механики реализуется в МКЭ?

2. Какие основные типы КЭ используются в МКЭ?

3. Как формулируется принцип Лагранжа?

4. Для чего нужны координатные функции и матрицы форм?

5. Что такое функция формы?

6. Как определяется матрица жесткости КЭ?

7. Какой физический смысл имеют элементы матрицы жесткости?

Л е к ц и я 15 расчет сооружений методом конечных элементов (продолжение)

5. Перенос нагрузки в узлы

В расчетной модели сооружения по МКЭ нагрузка должна быть приложена только в узлах. Поэтому действующую на систему внеузловую нагрузку необходимо переносить в узлы.

Порядок переноса нагрузки в узлы расчетной модели в простых случаях остается таким же как и ранее. Например, в стержневых системах используется таблица метода перемещений.

Если к прямоугольному КЭ действует изменяющаяся по линейному закону распределенная нагрузка (рис. 15.1 а), то узловые силы (рис. 15.1 б) определяются по формулам

, .

Рис. 15.1

При переносе объемной нагрузки, например собственного веса четырехугольного КЭ, в каждый узел нужно прикладывать четвертую часть его веса G (рис. 15.1 в). При переносе собственного веса треу-гольного КЭ в каждый узел прикладывается его третья часть (рис. 15.1 г).

В общем случае вектор узловой нагрузки определяется по формуле

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]