
- •Основы компьютерного проектирования и моделирования рэс
- •Оглавление
- •Глава 1. Основные понятия, определения, классификация 9
- •Глава 2. Классификация методов моделирования 37
- •Глава 7. Программирование в среде «mathcad» 159
- •Глава 8. Оценка искажений сигналов при прохождении через нелинейные устройства 178
- •Глава 9. Цифровая фильтрация 186
- •Глава 10. Синтез линейных антенных систем 286
- •Глава 11. О моделировании канала связи 314
- •Введение
- •Глава 1. Основные понятия, определения, классификация
- •1.1 Понятия системы, модели и моделирования
- •1.2 Классификация радиотехнических устройств
- •Отличительные признаки устройств согласно данной классификации
- •Устройства пассивного и активного типа
- •Устройства автономного и неавтономного типа
- •Устройство с элементами сосредоточенного и распределенного типа
- •1.3 Основные типы задач в радиотехнике
- •1.4 Развитие понятия модели
- •1.4.1 Модель как философская категория
- •1.4.2 Моделирование – важнейший этап целенаправленной деятельности
- •1.4.3 Познавательные и прагматические модели
- •1.4.4 Статические и динамические модели
- •1.5 Способы воплощения моделей
- •1.5.1 Абстрактные модели и роль языков
- •1.5.2 Материальные модели и виды подобия
- •1.5.3 Условия реализации свойств моделей
- •1.6 Соответствие между моделью и действительностью в аспекте различия
- •1.6.1 Конечность моделей
- •1.6.2 Упрощенность моделей
- •1.6.3 Приближенность моделей
- •1.6.4 Адекватность моделей
- •1.7 Соответствие между моделью и действительностью в аспекте сходство
- •1.7.1 Истинность моделей
- •1.7.2 О сочетании истинного и ложного в модели
- •1.7.3 Сложности алгоритмизации моделирования
- •1.8 Основные типы моделей
- •1.8.1 Понятие проблемной ситуации при создании системы
- •1.8.2 Основные типы формальных моделей
- •1.8.3 Математическое представление модели «черного ящика»
- •1.9 Взаимосвязи моделирования и проектирования
- •1.10 Точность моделирования
- •Глава 2. Классификация методов моделирования
- •2.1 Реальное моделирование
- •2.2 Мысленное моделирование
- •Глава 3. Математическое моделирование
- •3.1 Этапы создания математических моделей
- •З.2 Компонентные и топологические уравнения моделируемого объекта
- •3.3 Компонентные и топологические уравнения электрической цепи
- •Глава 4. Особенности компьютерных моделей
- •4.1 Компьютерное моделирование и вычислительный эксперимент
- •4.2 Программные средства компьютерного моделирования
- •Глава 5. Особенности радиосистемы как объекта изучения методами моделирования на эвм
- •5.1 Классы радиосистем
- •5.2 Формальное описание радиосистем
- •Глава 6. Применение пакета прикладных программmathcadдля моделирования телекоммуникационных устройств
- •6.1 Основные сведения об универсальном математическом пакете программMathCad
- •6.2 Основы языкаMathCad
- •3.246Е – 3 – это число 0.003246;
- •6.2.1 Тип входного языкаMathCad
- •6.2.2 Описание текстового окнаMathCad
- •6.2.3 Курсор ввода
- •6.2.4 Содержание командных меню (2-ая строка)
- •6.2.5 Управление элементами интерфейса
- •6.2.6 Выделение областей
- •6.2.7 Изменение масштаба документа
- •6.2.8 Обновление экрана
- •6.2.9 Содержание инструментальных панелей подменю «математика»
- •6.3 Основные правила работы в среде «MathCad»
- •6.3.1 Удаление математических выражений
- •6.3.2 Копирование математических выражений
- •6.3.3 Перенос математических выражений
- •6.3.4 Вписывание в программу текстовых комментариев
- •6.4 Построение графиков
- •6.4.1 Построение графиков в декартовой системе координат
- •6.4.2 Построение графиков в полярной системе координат
- •6.4.3 Изменение формата графиков
- •6.4.4 Правила трассировки графиков
- •6.4.5 Правила просмотра участков двумерных графиков
- •6.5 Правила вычислений в среде «MathCad»
- •6.6 Анализ линейных устройств
- •6.6.1 Передаточная функция, коэффициент передачи, временные и частотные характеристики
- •6.6.2 Коэффициент передачиK(jω)
- •6.6.3 Амплитудно-частотная характеристика (ачх)
- •6.6.4 Определение переходной и импульсной характеристик
- •6.7 Методы решения в среде «MathCad» алгебраических и трансцендентных уравнений и организация вычислений по циклу
- •6.7.1 Определение корней алгеброических уравнений
- •6.7.2 Определение корней трансцендентных уравнений
- •6.7.3 Вычисления по циклу
- •6.8 Обработка данных
- •6.8.1 Кусочно-линейная интерполяция
- •6.8.2 Сплайн-интерполяция
- •6.8.3 Экстраполяция
- •6.9 Символьные вычисления
- •6.10 Оптимизация в расчетах рэа
- •6.10.1 Стратегии одномерной оптимизации
- •6.10.2 Локальные и глобальные экстремумы
- •6.10.3 Методы включения интервалов неопределенности
- •6.10.4 Критерии оптимизации
- •6.10.5 Методы поиска экстремума функции цели
- •6.10.6 Пример записи целевой функции при синтезе фильтров
- •6.11 Анимация графического материала в средеMathCad
- •6.11.1 Подготовка к анимации
- •6.11.2 Пример анимации графика
- •6.11.3 Вызов проигрывателя анимации графиков и видео файлов
- •6.12 Установка связиMathCaDс другими программными средами
- •Глава 7. Программирование в среде «mathcad»
- •7.1 Обзор инструкций
- •7.1.1 Инструкция Add line
- •7.1.2 Оператор внутреннего присваивания
- •7.1.3 Условная инструкция «if»
- •7.2.1 Особенность присвоения значения функции
- •7.2.2 Общие принципы задания операторов
- •7.3 Примеры составления программ
- •7.3.1 Пример задания комплекса условий
- •7.3.2 Пример расчета с заданной точностью
- •7.3.3 Пример расчета различных параметров одной и той же программой
- •7.4 Создание новых функций с помощью программирования
- •7.5 Поиск ошибок в программах
- •Глава 8. Оценка искажений сигналов при прохождении через нелинейные устройства
- •8.1 Оценка нелинейных искажений при компресии и ограничении аудиосигналов на входе цифровых трактов
- •Глава 9. Цифровая фильтрация
- •9.1 Рекурсивные цифровые фильтры
- •9.2 Формы реализации рекурсивных фильтров
- •9.3 Методика синтеза рф по аналоговому прототипу
- •9.3.1 Синтез аналогового фильтра прототипа
- •9.3.2 Расчет числа звеньев и определение полюсов и нулей низкочастотного фильтра прототипа
- •9.3.3 Переход от аналогового фильтра прототипа к цифровому фильтру
- •9.3.4 Порядок и пример синтеза цифрового рекурсивного фильтра
- •9.4 Синтез нерекурсивных фильтров
- •9.4.1 Синтез нерекурсивных фильтров методом весовых функций
- •9.4.2 Основные параметры весовых функций
- •9.4.3 Импульсные характеристики идеальных цф различного типа
- •9.4.4 Методика синтеза нф методом весовых функций и пример синтеза полосового цифрового фильтра
- •9.5 Синтез нерекурсивного фильтра методом частотной выборки
- •9.5.1 Методика синтеза нф методом частотной выборки
- •9.6 АктивныйRc-фильтры
- •9.7 Передаточные функции фильтров
- •9.8 Преобразование частот
- •9.9 Реализация звеньев первого порядка
- •9.10 Реализация звеньев второго порядка
- •Глава 10. Синтез линейных антенных систем
- •10.1 Общая постановка задачи
- •10.2 Характеристика направленности как целевая функция
- •10.3 Синтез линейного излучателя методом парциальных диаграмм направленности
- •10.4 Синтез излучателей методом интеграла Фурье
- •10.5 Описание программ синтеза линейного излучателя в средеMathcad
- •Определяем число отсчетов (выборок по u)! и определяем значение парциалов (коэффициентов Котельникова) в этих точках! Построение фукция распределения возбуждения рядом Фурье!
- •Программа расчета х.Н. Линейного излучателя методом Фурье! Определяем расчетную частоту и размеры антенны! Формируем дн антенны!
- •10.6 Синфазные антенные решетки с оптимальной диаграммой направленности
- •10.7 Расчет амплитудного распределения возбуждения в линейных антенных решетках
- •10.8 Программа синтез антенной решетки по заданному уровню боковых лепестков
- •Расчет дн антенны по найденному распределению питающих токов.
- •11.2 Определение погрешностей моделирования (оценки средней вероятности ошибки) методом малых отклонений
- •11.3 Погрешности моделирования канала при исследованиях двоичных систем связи
- •11.3.1 Когерентный прием при моделировании релеевских замираний
- •11.3.2 Прием сигналов относительной фазовой телеграфии при моделировании релеевских замираний
- •Литература
Глава 10. Синтез линейных антенных систем
В этой главе будут рассматриваться простейшие линейные излучающие системы. Под линейной излучающей системой будет пониматься непрерывное или дискретное распределение одинаковых источников электромагнитного поля (т.е. излучателей), вдоль заданного направления в пространстве (рис.10.1). Примерами таких излучателей могут быть: длинный прямолинейный провод, щели в экране или в стенках волновода, диэлектрический стержень, система одинаковых излучателей (напр. вибраторов), спиральная антенна и т.д. Продольный размер излучателя может быть произвольным, а поперечные размеры, как правило, меньше длины волны. Как правило, комплексная характеристика направленности одного элемента излучателя известна.
Рис.10.1 Линейные излучатели
10.1 Общая постановка задачи
Задача синтеза антенны, или обратная задача электродинамики, возникает тогда, когда необходимо определить размеры, форму амплитуды и фазы возбуждающего тока или поля в раскрыве антенны по заданной диаграмме направленности. Например: получить узкую ДН при малых размерах самой антенны или получить узкую ДН при заданном уровне боковых лепестков. Могут так же синтезироваться антенны по максимальному КНД и оптимальной форме диаграммы направленности.
Требуемая
диаграмма направленности задается в
виде известной комплексной
функции
и
ищется функция распределения возбуждения
в ограниченной объеме пространства,
которая обеспечивает характеристику
направленности
,
близкую к заданной функции
по
определенным критериям. На практике
получили наибольшее распространения
два критерия близости этих функций:
среднеквадратичный и равномерный. В
случае среднеквадратичного приближения
ошибка синтеза оценивается выражением:
(10.1)
и
добиваются ее минимума
подбором соответствующего возбуждения.
Такое приближение используют, когда
направленные свойства антенны усредняются
по мощностным параметрам. Недостатком
этого приближения является возможность
появления локальных минимумов при
синтезе функции
.
При равномерном приближении ошибку синтеза определяют выражением:
,
которые
представляют собой максимальное значение
модуля отклонения полученной характеристики
от заданной функции направленности.
Минимизируются
величины ошибки, причем изменение
распределения возбуждения
позволяет
добиться требуемой близости функций
и
.
Однако вычисление Δ, связано с нахождением
максимума ошибки синтезируемой диаграммы
направленности, поэтому является более
сложным. Следовательно и решение задачи
синтеза ДН в равноволновом приближении
будет более сложным, чем при
среднеквадратичном.
Ослабление этих трудностей возможно, если в выражение (10.1) показатель степени выбирать в диапазоне (n = 6 ÷ 10).
Решение задачи антенной системы заканчивается определением закона распределения возбуждения вдоль излучателя. Но после этого возникает задача реализации этого закона в виде конкретной конструкции излучателя и распределителя. Из-за возникающих дополнительных трудностей, при решении внутренних электродинамических задач антенн, этот этап, чаще всего, решается путем эксперимента.
При синтезе антенн обычно форма излучающей системы задается заранее:
вид характеристики направленности сразу же может определить геометрию;
условия работы антенны, состав той системы, в которой предполагается использование антенны;
выбор формы антенны упрощает решение задачи синтеза, уменьшив тем самым число неизвестных.
Усложнение формы антенны, как правило, не требует разработки новых методов синтеза, а только обобщение уже имеющихся, поэтому дальше будем рассматривать теорию синтеза антенн, применительно к линейным излучающим системам.
Пусть на участке оси (х) расположен линейный излучатель с координатами от –L/2 до +L/2. Множитель направленности, которого может быть записан следующим образом [1]:
(10.2)
где
- закон возбуждения вдоль излучателя;k=2π/λ;
функция
- задана. Будем полагать, что в плоскости
угла θ необходимая диаграмма направленности
уже обеспечена правильным выбором
элементов из которых состоит сама
антенна.
Обозначим
,
и введем новую угловую переменную
(10.3)
Тогда уравнение (10.2) перепишется в виде
(10.4)
где
определена
только в области действительных углов–k
≤ z
≤ k,
или
.
В
выражении (10.4) неизвестна функция
,
а само выражение называется неоднородным
интегральным уравнением Фредгольма
первого рода. При этом множитель
представляет собой ядро этого уравнения.
Особенностью данного уравнения является
то, что сколько угодно малым изменением
функции
могут соответствовать сколь угодно
большие отличия в функции возбуждения
вдоль излучателя
.
Это означает, что решение уравнения
(10.4) может быть неустойчивым. Для получения
устойчивых решений, необходимо ограничить
поиск требуемого решения некоторыми
дополнительными условиями, которые
определяются какими либо физическими
соображениями. Например: можно потребовать,
чтобы среднее значение амплитуды
возбуждения и средняя скорость изменения
возбуждения были бы ограничены по
сравнению с мощностью излучения. Эти
ограничения можно записать математически
следующим образом:
(10.5)
Здесь А и В некоторые заданные постоянные.