
- •Вопрос 6. Структурная организация и свойства биологической мембраны.
- •Вопрос 11. Поверхностный аппарат клетки. Транспорт макромолекул.
- •Вопрос 15 . Поверхностный аппарат клетки. Транспорт макромолекул.
- •Вопрос 19. Система сигнализации: эндокринная, синоптическая. Роль медиаторов и гормонов.
- •Вопрос 20. Понятие о вторичных посредниках. Инозитолфосфатная система
- •Вопрос 21. Понятие о вторичных посредниках. Аденилатцеклазная система
- •Вопрос 24. Синаптическая передача нервного импульса.
- •Вопрос 30. Митохондрии. Организация потока энергии в клетке.
- •Вопрос 37. Лизосомы. Образование строение функция. Гетерогенность лизосом. Патологии лизосом.
- •Вопрос 38. Опишите путь секреторного белка от места синтеза белка до выхода из клетки.
- •Вопрос 40. Опишите путь макромолекулы от момента поступления её в клетку до момента усвоения.
- •Вопрос 41. Роль аг и эр в регенерации и обновлениях поверхностного аппарата клетки (пак)
- •Синтез в эндоплазматическом ретикулуме
- •Строение мышцы.
- •Вопрос 50:Морфология ядерных структур.
- •Вопрос 51. Роль ядерных структур в жизнедеятельности клетки
- •Вопрос 53. Ядро-система хранения, воспроизведение и реализации генетического материала.
- •Вопрос 54. Организация и свойства клеточного ядра.
- •Поток информации
- •Вопрос 57. Организация эу- и гетерохроматина. Структура и химия хромасаомы.
- •Вопрос 58. Уровни структурной организации хроматина
- •Вопрос 59. Первый уровень компактизации днк. Структурная роль нуклиосом. Нуклиосомы при репликации. Политенные хромосомы.
- •Вопрос 60. Второй и третий уровень организации хромотина.
- •Вопрос 62.Самовоспроизведение наследственного материала.
- •Вопрос 64. Способы записи генетической информации в молекуле днк. Биологический код и его ф-ции.
- •Вопрос 70. «Центральная догма»молекулярной биологии. Понятие об обратной транскрипции. Современные проблемы генной инжинерии.
- •Вопрос 71. Синтез белка в клетке. Генетический код. Функции и-,т-,р-рнк.
- •72.Особенности образования иРнк в клетках эу- и прокариот.
- •Основания и правила…
- •Вариации на тему.
- •Рибосома.
- •Подумаем…
- •73.Экспресся генетической информации у эукариот.
- •74.Экспресся генетической информации у прокариот.
- •75.Регуляция экспрессии генов у эукариот (на уровне транскрипции, процессинга и посттранскрипционном уровне).
- •76.Регуляция экспрессии генов у прокариот. Индукция синтеза катаболических ферментов (Lac-оперон).
- •77.Регуляция экспрессии генов у прокариот. Репрессия синтеза анаболических ферментов (trp-оперон).
- •3. Репрессия синтеза белков. Триптофановый и гистидиновый опероны
- •78.Общие принципы генетического контроля экспрессии генов.
- •79.Роль регуляторных белков в регуляции генной активности (репрессоры, активаторы).
- •80.Организация генома прокариот.
- •81.Организация генома эукариот.
- •82.Неклеточные формы жизни. Вирусы.
- •83.Цитологические основы бесполого размножения. Механизмы поддержания постоянства кариотипа поколений организмов и клеток.
- •84.Жизненный цикл клетки. Регуляция митотического цикла.
- •85.Нарушения клеточного цикла. Амитоз. Эндомитоз. Политения.
- •86.Бесполое размножение и его формы.
- •Размножение делением
- •Размножение спорами
- •87.Половое размножение. Регулярные и нерегулярные формы.
- •88.Цитологические основы полового размножения. Мейоз, как специфический процесс при формировании половых клеток.
- •89.Гаметогенез. Строение половых клеток.
- •90.Закономерности сперматогенеза у млекопитающих и человека.
- •91.Закономерности овогенеза у млекопитающих и человека.
- •Развитие половых клеток.
- •92.Оплодотворение, его формы и биологическая функция. Моно- и полиспермия.
- •93.Морфологические и функциональные особенности зрелых гамет млекопитающих и человека.
- •1.Общие св-ва и уровни организации генетического аппарата (геном, генотип, кариотип).
- •2.Ген – функциональная единица наследственности. Эволюция представлений о гене.
- •3.Особенности генома эукариот.
- •4.История изучения структуры гена.
- •5.Сравнительная хар-ка геномов прокариот и эукариот.
- •6.Регуляция экспрессии генов у эукариот.
- •7.Регуляция экспрессии генов у прокариот.
- •1. Теория оперона
- •8.Международная программа (геном человека).
- •Предпосылки
- •9.Организация генома человека.
- •10.Понятие о геномике и новый взгляд на эволюцию.
- •11.Экспериментальные доказательства генетической роли нуклеиновых кислот.
- •12.Химическая организация гена. Классификация генов по структуре и функциям.
- •13.Генетический полиформизм и разнообразие геномов человека.
- •14.Новый взгляд на эволюцию Homo sapiens.
- •15.Биохимическая уникальность человека. Гены предрасположенности.
- •16.Организация генома митохондрий. Митохондриальные болезни.
- •17.Общие принципы генетического контроля экспрессии генов.
- •18.Нейтральные мутации. Генетический полиморфизм.
- •19.Классификация генов человека по структуре и функциям.
- •20.Генетически модифицированные продукты. Польза или вред?
- •21.Организация геномов рнк- и днк- содержащих вирусы.
- •22.Признаки клеток, трансформированных опухолеродными вирусами.
- •24.Онкогенные вирусы. Жизненный цикл ретровирусов.
- •25.Роль вирусов в неопластической трансформации клеток.
- •26.Морфофизиологические особенности опухолевых клеток.
- •27.Использование новых технологий в создании генетической рекомбинации организмов (генотерапия, клеточная терапия).
- •Описание
- •28.Генная диагностика и генная терапия. Схема генной коррекции.
- •29. Генетическое тестирование. Генная и клеточная терапия.
- •30.Периоды онтогенеза человека. Пренатальное и постнатальное развитие.
- •31.Периоды онтогенеза человека (пренатальное развитие). Понятие о критических периодах.
- •32.Метод экстракорпорального оплодотворения (эко0. Об искусственном оплодотворении.
- •33.Закономерности развития зародыша. Мозаичный тип развития.
- •Мозаицизм, ограниченный плацентой
- •34 .Закономерности развития зародыша. Регулярный тип развития (эмбриональная индукция).
- •35.Молекулярные основы механизмов эмбрионального развития. Понятие о морфогенах и гомеозисных генах.
- •36.Понятие об эпигенетической изменчивости.
- •37.Молекулярные механизмы развития зародыша. Метилирование цитозина в днк – регуляция генной активности.
- •38. Введение в тератологию. Понятие о критических периодах.
- •39.Классификация тератогенов.
- •40.Периоды онтогенеза человека (постнатальное развитие).
- •41.Стволовые клетки и их использование в медицине.
- •42.Иерапевтическое клонирование. Понятие о стволовых клетках.
- •43.Клонирование и вопросы трансплантации.
- •44.Вопросы трансплантации. Виды трансплантации.
- •45.Дифференциация пола эмбриона. Развитие вторичных половых признаков.
- •46.Дифференциация мужской половой системы.
- •47.Дифференциация женской половой системы.
- •48.Развитие пола в онтогенезе. Балансовая теория определения пола (гипотеза Бриджеса). Переопределение пола в онтогенезе.
- •49.Хромосомная теория определения пола.
- •50.Роль наследственных и средовых факторов в опрелении половой принадлежности
- •51.Проблемы старения организма. Факторы старения. Долгожители. Преждевременное старение.
- •52.Современное представление о механизмах старения.
- •53.Общие понятия о генетическом материале и его свойствах. Роль ядра и цитоплазмы в наследственности и изменчивости.
- •54.Цитоплазматическая наследственность.
- •55.Этапы развития генетики.
- •56.Законы г.Менделя и их цитологическое обоснование.
- •57.Статистический характер законов г.Менделя. Условие их выполнения.
- •58.Наследование групп крови (аво – система) и резус-фактора у человека.
- •59.Количественная и качественная специфика проявления генов в признаках. Плейотропия, пенетрантность, экспрессивность, генокопии.
- •60.Сцепленное наследование. Эксперименты т.Моргана.
- •61.Наследование признаков, сцепленных с полом. Наследование признаков контролируемх х и у хромосомой человека. Явления истинного и ложного гермафродитизма.
- •62.Основные положения хромосомной теории наследственности. Генетические и цитологические карты хромосом.
- •64. Определение пола у организмов Переопределение пола.
- •65.Фенотип организма. Роль наследственности и среды в формировании фенотипа.
- •66.Модификационная изменчивость. Норма реакции.
- •Условная классификация модификационной изменчивости
- •Механизм модификационной изменчивости Окружающая среда как причина модификаций
- •Характеристика модификационной изменчивости
- •67.Рекомбинация наследственного материала в генотипе. Комбинативная изменчивость.
- •68.Мутационная изменчивость и её виды.
- •69.Соматические мутации. Понятие о клеточных клонах. Понятие о мозаицизме.
- •70.Генеративные мутации.
- •71.Виды мутаций. Спонтанные и индуцированные. Классификация мутагенов.
- •72.Геномные мутации. Болезни, связанные с нарушением количества аутосом.
- •Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом
- •Болезни, связанные с нарушением числа половых хромосом
- •73. Геномные мутации. Болезни, связанные с нарушением количества половых хромосом.
- •75Геномные мутации у человека и их последствия. Болезни обмена веществ. Характеристика наиболее частых трисомий
- •76.Роль ферментов в клеточном метаболизме. Энзимопатии.
- •Углеводы
- •Нуклеотиды
- •77.Человек как специфический объект генетического анализа. Медико-генетическое консультирование и прогнозирование.
- •78.Мутации несовместимые с жизнью человека.
- •80.Причины гетероплоидии у человека.
- •81.Изменения нуклеотидных последовательностей днк. Генные мутации.
- •82.Изменение структурной организации хромосом. Хромосомные мутации.
- •83.Методы в генетике человека. Генеалогический метод. Принципы построения родословных и их типы.
- •84.Методы в генетике человека. Цитогенетические методы. Кариотип человека.
- •85.Кариотип человека. Денверская и Парижская Классификация хромосом.
- •86.Методы в генетике человека. Близнецовый метод.
- •87. Методы в генетике человека. Биохимический метод. Дерматоглифика.
- •88. Методы в генетике человека. Молекулярно-генетические методы (исследование днк). Генетическое тестирование. Генетическое прогнозирование.
- •89.Генетическая гетерогенность популяций в человеческом обществе. Популяционно-статистический метод.
- •1.Паразитизм, как биологический феномен. Специфика среды обитания паразитов.
- •2.Экологические основы выделения групп паразитов. Классификация паразитических форм животных.
- •3.Популяционный уровень взаимодействия паразитов и хозяев. Типы регуляции и механизмы устойчивости системы «паразит-хозяин».
- •4.Пути происхождения групп паразитов.
- •5.Пути морфо-физиологической адаптации к паразитическому образу жизни.
- •6. Понятие об трансмиссивных болезнях. Экологические основы их выведения.
- •7.Природноочаговые протозоонозы. Структура природного очага, основные эелементы (на примере лейшманиоза).
- •8.Природноочаговые гельминтозы. Структура природного очага, основные элементы.
- •9.Природноочаговые трансмиссивные инвазии и инфекционные болезни. Экологические основы и их выделения. Основные элементы природного очага.
- •10.Понятие об антропонозах, энтропозоонозах. Зоонозах.
- •12.Простейшие – полостные паразиты человека. Простейшие, обитающие в полостных органах, сообщающихся с внешней средой
- •Выделяют следующие группы простейших:
- •13.Виды малярийных плазмоидов, патогенное действие для человека. Лабораторная диагностика. Виды (формы) малярии
- •14.Дизентерийная амёба. Особенности строения, цикла развития, пути распространения, патогенное действие. Методы лабораторной диагностики.
- •15.Токсоплазма. Морфофункциональная характеристика: цикл развития, пути заражения, патогенное действие, методы лабораторной диагностики.
- •16.Понятие о гельминтах. Гео- и биогельминты.
- •17.Тип членистоногие. Эпидемиологическое значение клещей.
- •18.Тип членистоногих. Отряд Насекомые, имеющие эпидемиологическое значение.
- •19.Виды экологии: аутэкология, демэкология, синэкология. Понятие об экосистеме.
- •20.О преобразовании природной среды (4 направления). Охранные мероприятия. Красная книга. Национальные парки, заповедники, заказники.
- •21.О влиянии радиации на организм человека.
- •22.Вопросы радиационной безопасности человека. Последствия аварии на Чернобыльской аэс.
- •23.Факторы, влияющие на изменение климата.
- •Климатические изменения на Земле
- •24.Химическое и радиоактивное загрязнение окружающей среды. «Зелёные столицы» Европы.
- •25.Загрязнение окружающей среды. Альтернативные источники энергии.
- •26.Медико-биологические аспекты экологии человека. Проблема питания. Экологически чистые продукты. Генетически модифицированные продукты.
- •36.Клиническая классификация растений опасных для здоровья. Растения, действующие на ссс.
Основания и правила…
Теперь посмотрим, что послужило основанием для формирования постулатов считывания ДНК, принятых в генетике:
«В 1961 году Ф. Крик и С. Бреннер экспериментально показали, что делеция (вырезание) одного нуклеотида, дающая мутантный фенотип, может быть скомпенсирована вставкой нуклеотида вблизи делеции. Этот результат можно было объяснить предположив, что при делеции нуклеотида происходит сдвиг рамки считывания за местом делеции, и это приводит к полному изменению смысла всей последующей информации; при вставке одного нуклеотида вблизи места делеции происходит восстановление первоначальной рамки считывания и первоначального смысла закодированной информации. Таким образом, описанные эксперименты доказали, что генетический код не содержит запятых. В опытах с делециями и вставками Крик, Барнет, Бреннер и Уотс-Тобин (1961) также подтвердили, что код является триплетным или кратен трем, поскольку три делеции или три вставки нуклеотидов давали нормальный фенотип. Опыты Г. Виттманна по замене единичных оснований в РНК вируса табачной мозаики показали, что такие замены могут приводить к замене только одной аминокислоты в белке. Это однозначно свидетельствовало в пользу того, что генетический код не перекрывается. Другими словами, каждое основание РНК входит в состав лишь одного триплета (кодона)». [1].
То есть, если вырезать один нуклеотид … и тут же рядом вставить, то … ничего не изменится. Это подтверждает отсутствие запятых…, а так же и триплетность кода.
А вот опыты Г. Виттманна - это серьезнее. Если учесть то, что сказано далее о нечувствительности трансляции к третьему элементу кода триплета, то… этот постулат не совсем верен. Неперекрываемость генетического кода не подтверждается. Коды могут перекрываться, но мы это далеко не всегда видим.
Таким образом, подтвержденными можно считать только триплетность и непрерывность кода ДНК и мРНК.
Вот теперь можно считывать информацию с ДНК и мРНК. Здесь правила примерно одинаковы. При этом:
«…первый же встреченный на иРНК кодон AUG (Met) задает фазу последующего считывания троек, то есть служит той самой фиксированной точкой, с которой начинается считывание. Любой последующий AUG просто кодирует Met. В конце гена обязательно стоит UAA, или UAG, или UGA, а то и два нонсенса подряд». [2]
Видимо, это обычный порядок считывания. Начало и конец считывания установлен. Оказывается, мы давно знаем это.
Стандартная мРНК.
Как мы уже говорили, процесс получения стандартной мРНК достаточно длинный. Вот как это происходит:
«Эукариотические мРНК … Их транскрипция и трансляция пространственно разобщены. Транскрипция протекает в ядре, а трансляция - в цитоплазме (рис. 2, б ). Эукариотические мРНК синтезируются в виде предшественников и проходят в своем биогенезе стадию довольно сложного созревания, или процессинга. Процессинг включает в себя: 1) кэпирование 5'-конца, заключающееся в присоединении к этому концу мРНК так называемой шапочки (кэп-структуры), 2) полиаденилирование 3'-конца и, наконец, 3) сплайсинг - вырезание протяженных внутренних участков мРНК, так называемых интронов, и ковалентное воссоединение оставшихся фрагментов (экзонов) через обычную фосфодиэфирную связь…». [1].
|
Рис. 2. Транскрипция и трансляция мРНК прокариот (а); транскрипция, процессинг и трансляция мРНК эукариот (б). |
Процессинг имеет целью сформировать различные области мРНК в нужном для трансляции порядке.
«Те части молекулы мРНК, в которых закодированы белки, называются транслируемыми областями. Однако помимо транслируемых областей в мРНК имеются достаточно протяженные последовательности, не кодирующие белок. Общая длина этих нетранслируемых областей порой может достигать или даже превышать длину транслируемых областей. [1]
Перестановки и удаления фрагментов мРНК выполняются на этапе сплайсинга:
«Сплайсинг (от англ. splice — сращивать или склеивать концы чего-либо) — процесс вырезания определенных нуклеотидных последовательностей из молекул РНК и соединения последовательностей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК. Наиболее часто этот процесс встречается при созревании информационной РНК (мРНК) у эукариот, при этом путём биохимических реакций с участием РНК и белков из мРНК удаляются участки, не кодирующие белок (интроны) и соединяются друг с другом кодирующие аминокислотную последовательность участки — экзоны. Таким образом незрелая пре-мРНК превращается в зрелую мРНК, с которой считываются (транслируются) белки клетки. Большинство генов прокариот, кодирующих белки, не имеют интронов, поэтому у них сплайсинг пре-мРНК встречается редко. У представителей эукариот, бактерий и архей встречается также сплайсинг транспортных РНК (тРНК)[1] и других некодирующих РНК». [8]
Нетранслируемые области внутри мРНК, как мы поняли, называются интронами. Попробуем выяснить, что из себя представляют интроны, которые удалятся при сплайсинге стандартной мРНК:
«Существуют две альтернативные теории, объясняющие происхождение и эволюцию сплайсосомных интронов: так называемые теории ранних интронов (РИ) и поздних интронов (ПИ). Теория РИ утверждает, что многочисленные интроны присутствовали в общих предках эу- и прокариот и, соответственно, интроны являются очень старыми структурами. Согласно этой модели, интроны были потеряны из генома прокариот. Также она предполагает, что ранние интроны способствовали рекомбинации экзонов, представляющих домены белков. ПИ утверждает, что интроны появились в генах относительно недавно и были инсертированы (вставлены) в геном после разделения организмов на про- и эукариоты. Эта модель основывается на наблюдении, что сплайсосомные интроны есть только у эукариот». [7]
«Почти все эукариотические ядерные интроны начинаются с GU и оканчиваются AG (правило AG-GU)». [7]
Рис.3.Схема нуклеотидной последовательности пре-мРНК гена CDK4 человека. Большую часть последовательности занимают интроны (показаны серым цветом)
Для прокариотов значимость интронов установлена более точно:
«В прокариотических полицистронных мРНК имеются также внутренние межцистронные нетранслируемые области, располагающиеся между транслируемыми областями. Наряду с информацией о последовательности аминокислот в белке молекулы мРНК содержат информацию, определяющую их поведение в клетке (активность и время жизни, внутриклеточное распределение). Эта информация находится в основном в нетранслируемых областях мРНК».[1].
Вот так. Что такое интроны – узнали мало, но выяснилось много нового…
Если рассматривать мРНК-предшественник, как общую информацию о том, или ином белке, то экзоннадо рассматривать, как исполнительную программу производства белка на рибосоме, аинтрон– дополнительная информация об этом. Например, что с чем сшивать и в каком порядке, как настроить рибосому на этот процесс, перечень дополнительных команд, и т.д.
Интроны, как раз и есть кодированная запись команд и синхронизации всего производства белка - главное в этом процессе. Очень возможно, что интроны обрабатываются и частично вставляются в области 5' и 3', как дополнительная информация для считывающего устройства рибосомы.
В сформированной для трансляции мРНК:
Нетранслируемые области находятся на обоих концах молекул мРНК и соответственно называются 5'- и 3'-НТО». [1]
Полиаденилирование 3'-конца закодировано в самой мРНК. Потому, что:«Около половины мРНК эукариот полиаденилируются на 3'-конце во время процессинга в клеточном ядре. Сигналом ядерного полиаденилирования 3'-конца служит последовательность AAUAAA, расположенная за 10-20 нуклеотидов от этого конца». [1].
«Такой последовательностью у амфибий является (U)6AUAAAG. Поли(А)-хвост на мРНК узнается особым поли(А)-связывающим белком, который участвует в инициации трансляции мРНК по кэп-зависимому механизму». [1].
И получилась мРНК, пригодная для сборки белка. Наша - такая же, как на рис 2.(б).
Теперь посмотрим на рис.4. Это и есть стандартная форма мРНК.
Ничего не напоминает? А ведь весьма похоже на строку из памяти компьютера. Составляющие почти те же…
Только чуть сложнее. Разрешающий код, потом код начала строки и программа действий, «старт-код», собственно информационная часть, «стоп-код», проверочные и контрольные суммы, дополнительная информация о порядке выполнения действий, и, наконец, код окончания строки.
|
Рис. 4. Схема расположения функциональных участков на молекуле мРНК. В подтверждение существования стандартной мРНК: |
«Зрелые эукариотические мРНК, как правило, моноцистронны и кодируют только одну полипептидную цепь». [1]
Таким образом, можно сказать, что стандартизация мРНК развивалась вместе с развитием клетки.