Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biologia_ekz.doc
Скачиваний:
769
Добавлен:
10.04.2015
Размер:
3.9 Mб
Скачать

Вопрос 70. «Центральная догма»молекулярной биологии. Понятие об обратной транскрипции. Современные проблемы генной инжинерии.

Центральная догма молекулярной биологии— обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся отнуклеиновых кислоткбелку, но не в обратном направлении. Правило было сформулированоФренсисом Крикомв1958году[1]и приведено в соответствие с накопившимися к тому времени данными в1970году[2]. Переход генетической информации отДНКкРНКи от РНК кбелкуявляется универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменениеконформациибелков, передаваемое от молекулы к молекуле.

Обратная транскрипция— это процесс образования двуцепочечнойДНКна матрице одноцепочечнойРНК. Данный процесс называетсяобратнойтранскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.[1]

Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНКтранскрибируетсяв РНК и далеетранслируетсяв белки.[2]

Однако в 1970 году Темин[3]иБалтимор[4]независимо друг от друга открыли фермент, названныйобратной транскриптазой (ревертазой), и возможность обратной транскрипции была окончательно подтверждена. В 1975 году Темину и Балтимору была присуждена Нобелевская премия в области физиологии и медицины.

Вопрос 71. Синтез белка в клетке. Генетический код. Функции и-,т-,р-рнк.

Одним из важнейших процессов, протекающих в клетке, является синтез белков. Клетка содержит тысячи белков, клетка должна непрерывно синтезировать белки для восстановления своих мембран, органоидов и т. п. Синтез белка требует больших затрат энергии. Источником этой энергии, как и для всех клеточных процессов, является АТФ.     Многообразие функций белков определяется их первичной структурой, т. е. последовательностью аминокислот в их молекуле. В свою очередь наследственная информация о первичной структуре белка заключена в последовательности нуклео- тидов в молекуле ДНК. Участок ДНК, в котором содержится информация о первичной структуре одного белка, называется геном. Каждой аминокислоте белка в ДНК соответствует последовательность из трех расположенных друг за другом нуклеотидов — триплет. К настоящему времени составлена карта генетического кода, т. е. известно, какие триплетные сочетания нуклеотидов ДНК соответствуют той или иной из 20 аминокислот, входящих в состав белков.     64 различные аминокислоты, тогда как кодируется только 20 аминокислот. Оказалось, что многим аминокислотам соответствует не один, а несколько различных триплетов — кодонов. Очень важное свойство генетического кода — специфичность, один триплет всегда обозначает только одну-единственную аминокислоту. Генетический код универсален.     Носителем всей генетической информации является ДНК, расположенная в ядре. Сам синтез белка происходит в цитоплазме клетки, на рибосомах. Из ядра в цитоплазму информация о структуре белка поступает в виде и-РНК. Для того чтобы синтезировать и-РНК, участок ДНК «разматывается», деспирализуется, а затем по принципу комплементарности на одной из цепочек ДНК с помощью ферментов синтезируются молекулы РНК. Т.о, информация о последовательности нуклеотидов какого-либо гена ДНК «переписывается» в последовательность нуклеотидов и-РНК. Это называется транскрипции.    Строение всех т-РНК сходно. Виды т-РНК обязательно различаются по триплету нуклеотидов, расположенному на «верхушке». Этот триплет, получивший название антикодон, по генетическому коду соответствует той аминокислоте, которую предстоит переносить этой т-РНК.        В цитоплазме происходит последний этап синтеза белка — трансляция. На тот конец и-РНК, с которого нужно начать синтез белка, нанизывается рибосома (рис. 1.15). Рибосома перемещается по молекуле и-РНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно 0,2 с. За это мгновение одна т-РНК из многих способна «опознать» своим антикодоном триплет, на котором находится рибосома. И если антикодон комплементарен этому триплету и-РНК, аминокислота отсоединяется от «черешка листа» и присоединяется пептидной связью к растущей белковой цепочке. В этот момент ибосома сдвигается по и-РНК на следующий триплет, кодирующий очередную аминокислоту синтезируемого белка, а очередная т-РНК «подносит» необходимую аминокислоту, наращивающую цепочку белка. Эта операция повторяется столько раз, сколько аминокислот должен содержать «строящийся» белок. Когда в рибосоме оказывается один из трипле тов, являющийся «стоп-сигналом» между генами, то ни одна и-РНК к такому триплету присоединиться не может, так как антикодонов к ним у т-РНК не бывает. В этот момент синтез белка заканчивается. Все описываемые реакции происходят за очень короткие промежутки времени. Подсчитано, что на синтез довольно крупной молекулы белка уходит всего около двух минут.     Таким образом, трансляция — это перевод последовательности нуклеотидов молекулы и-РНК в последовательность аминокислот синтезируемого белка. И для каждой отдельной реакции белкового синтеза требуются специализированные ферменты. Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНКиспользуется четыре нуклеотида —аденин(А),гуанин(G),цитозин(С),тимин(T), которые в русскоязычной литературе обозначаются буквамиА,Г,ЦиТ. Эти буквы составляюталфавитгенетическогокода. ВРНКиспользуются те же нуклеотиды, за исключениемтимина, который заменён похожим нуклеотидом —урацилом, который обозначается буквойU(Ув русскоязычной литературе). В молекулахДНКиРНКнуклеотидывыстраиваются в цепочки и, таким образом, получаются последовательности генетических букв. Для построения белков в природе используется 20 различныхаминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокислот также универсален почти для всех живых организмов.

Реализация генетической информациив живых клетках (то есть синтез белка, кодируемогогеном) осуществляется при помощи двух матричных процессов:транскрипции(то есть синтезаи-РНКна матрицеДНК) итрансляциигенетического кода в аминокислотную последовательность (синтез полипептидной цепи нар-РНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называетсятриплетом. Принятые сокращения, соответствующие аминокислотам икодонам.

иРНК - информационная - несёт закокодированную информацию о ДНК в рибосомы. в трансляции несет инфо о последовательности аминокислот белка. тРНК - транспортная - переносит аминокислоты в место синтеза белков рРНК - рибосомная - производит синтез белка

Соседние файлы в предмете Биология