Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава1-4.doc
Скачиваний:
224
Добавлен:
31.03.2015
Размер:
2.07 Mб
Скачать
    1. Восстановление спиртов

Восстановление спиртов до углеводородов осуществляется при взаимодействии их с йодистоводородной кислотой в присутствии красного фосфора, который служит для регенерации йодистоводородной кислоты.

HOCH2(CHOH)4CH2OH + 12HJ → CH3(CH2)4CH3 + 6J2 + 6H2O

Сорбит н-Гексан

2P + 3J2 = 2PJ3 PJ3 + 3H2O = 3HJ + H3PO3

    1. Взаимодействие с щелочными и щелчноземельными металлами.

Подобно воде спирты реагируют со щелочными и щелочноземельными металлами, а также с магнием с образованием алкоголятов и водорода.

2 (CH3)3CОН + 2К → 2 (CH3)3CОK + H2

2 СН3ОН + Mg → (CH3O)2Mg + Н2

Алкоголяты щелочных металлов применяются в качестве оснований в реакциях отщепления из алкилгалогенидов, приводящих к образованию алкенов.

Реакции спиртов с карбонильными соединениями, альдегидами и кетонами, а также с кислотами - этерификация кислот с образованием сложных эфиров, обычно рассматривается при изложении свойств карбонильных соединений и кислот, соответственно, и поэтому не будет рассматриваться в этом разделе.

2.15. Двухатомные спирты

Спирты, содержащие две гидроксильные группы, носят на­звание диолов. В номенклатуре IUPAC для их названия вместо суффикса «ол» используют суффикс «диол», а цифры обозначают атомы углерода главной цепи, с которым связаны две гидроксильные группы, например:

Геминальные диолы – 1,1-диолы, содержащие две ОН-группы у одного и того же атома углерода, нестабильны и разлагаются с отщеплением воды и образованием карбонильного соединения:

Равновесие в этом процессе смещено в сторону образования кетона или альдегида, поэтому сами геминальные диолы обычно называют гид­ратами кетонов или альдегидов, если вместо одного из радикалов находится водород. Вицинальные диолы – 1,2 –диолы, содержащие две ОН-группы у соедних атомов углерода, представляют собой устойчивые соединения. Здесь и далее термин 1,2-диолы будет использоваться для двухатомных спиртов, содержащих гидроксильные группы у соседних атомов углерода.

2.16. Получение диолов

Одним из наиболее простых методов получения 1,2-диолов является гидроксилирование алкенов при действии перманганата калия. Поскольку перманганат калия является сильным окислителем, способным не только гидроксилировать двойную связь, но и расщеплять образующийся вицинальный диол, необходим тщательный контроль условий реакции. Оптимальные результаты достигаются при проведении реакции в слабощелочной среде (рН≈8) при низкой температуре разбавленным водным раствором KmnO4.

Другие возможные методы получения могут включать гидролиз вициналь-ных дигалогенидов:

2.17. Свойства диолов

Для диолов характерны те же реакции, что и для одноатом­ных спиртов. Кроме того 1,2-диолы проявляют некоторые спе­цифические свойства, обусловленные наличием двух соседних гидроксильных групп. Они будут рассмотрены в этом разделе.

Дегидратация 1,2-диолов может протекать по двум направлениям: 1) образование диенов; 2) образование циклических эфиров. Обе эти реакции катализируются кислотами. Дегидратация двутретичных или двувторичных 1,2-диолов легко протекает при нагревании их с концентрированной HBr.

Образование циклических эфиров или циклодегидратация 1,2-диолов приводит к образованию 1,4-диоксана, если 1,2-диолом является 1,2-этанди- ол (этиленгликоль); в этом случае шестичленный цикл образуется из двух молей 1,2-этандиола.

1,4- и 1,5-диолы циклизуются в этих условиях с образованием пяти- и шести-членных циклов:

Качественной реакцией на 1,2-диолы является проба с гидроксидом меди в щелочной среде. При этом наблюдается растворение гидроксида меди и получается раствор, окрашенный в глубокий синий цвет, вследствие образо- вания хелатного комплекса Cu(II).

2.18. ТРЁХАТОМНЫЕ СПИРТЫ

Важнейшим из трёхатомных спиртов является глицерин – пропантриол-1,2,3, который входит в состав липидов в виде сложных эфиров с высшими насыщенными и ненасыщенными кислотами .

Глицерин

первичная спиртовая группа глицерина (CH2OH) активнее чем вторичная спиртовая группа (CHOH) и при действии таких реагентов как хлористый водород или азотная кислота может быть селективно превращена в хлорид или кислоту, соответственно.

Дегидратация глицерина даёт простейший ненасыщенный альдегид – акролеин (пропеналь):

Также как этиленгликоль глицерин даёт качественную реакцию, характер-ную для 1,2-диолов, с гидроксидом меди в щелочной среде

2.19. ПРОСТЫЕ ЭФИРЫ

НОМЕНКЛАТУРА ПРОСТЫХ ЭФИРОВ

По номенклатуре IUPAC эфиры рассматривают как алкоксиалканы. Родоначальную структуру определяет наиболее длинная алкильная группа:

(СH3)2CH-OC2H5

2-этоксипропан

(CH3)2CH-O-CH(CH3)2

2-изопропоксипропан

CH3-O-СH2CH2CH2CH3

метоксибутан

СH3OCH2CH2OCH3

1,2-диметоксиэтан

1-этокси-4,4-диметилпентан

3-пропоксигексан

ПОЛУЧЕНИЕ ПРОСТЫХ ЭФИРОВ

Существует два общих метода получения простых эфиров: межмолекулярная дегидратация спиртов и нуклеофильное замещение галогена в алкилгалогенидах при действии алкоголятов щелочных металлов (реакция Вильямсона). Оба этих способа были описаны выше.

2.20. СВОЙСТВА ПРОСТЫХ ЭФИРОВ

В химическом отношении простые эфиры характеризуют­ся высокой инертностью по отношению ко многим реаген­там, особенно основной природы. Они не расщепляются металлоорганичскими соединениями, гидридами и амидами щелочных металлов, а также комплексными гидридами бора и алюминия. Поэтому такие соединения, как диэтиловый эфир, тетрагидрофуран, диметоксиэтан, диметиловый эфир диэтиленгликоля, диоксан и другие широко используются как растворители в реакциях с приведенными выше соединениями.

Эфиры образуют очень прочные комплексы с кислотами Льюиса - BF3, АlВr3, SbCl5, SbF5, и т.д. состава 1:1, в которых они выступают в качестве оснований Льюиса

По отношению к сильным кислотам эфиры проявляют свойства оснований (в данном случае оснований Бренстеда) и об­разуют соли диалкилоксония