Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Extracellular and Intracellular Signaling (книга).pdf
Скачиваний:
13
Добавлен:
31.03.2015
Размер:
13.39 Mб
Скачать

Intracellular Signaling Pathways in Parkinson’s Disease

261

proteins starts signaling pathways involved in cell survival and synaptic plasticity. Additionally, exposure to glutamate facilitates de novo synthesis of dopamine in dopaminergic neurons and changes dopamine distribution from vesicles to the cytosol,126 which provides increased levels of free dopamine that can be oxidized.

13.3.1.4Other Initiators

Most mechanisms of signaling initiation discussed above involve the e ect of noxious stimulus to the dopaminergic cell; however, selective dopaminergic cell death may involve the lack of or deficient signaling through cell survival pathways. Neuroprotective factors activate pro-survival pathways or block pro-apoptotic signaling pathways resulting in cell death. However, there are not clearly identified neuroprotective factors against PD; some putative neuroprotective factors have been described including neurotrophic factors, dopamine receptor agonists, Na1 channel blockers with anti-glutamatergic activity, anti-inflammatory agents and the long-term treatment with L- DOPA.127 Neuroprotective properties of neurotrophic factors have been extensively studied and are the primary target for gene therapy for PD. Neurotrophic factors act via two classes of receptors: tyrosine kinase receptors (Trk) and P75NTR. Upon Trk receptor binding, growth factors induce receptor dimerization and trans-autophosphorylation of tyrosine residues in the cytoplasmic domains. Adaptor proteins and kinases then associate with the activated receptors to form a signaling complex that will activate downstream prosurvival pathways128 (Figure 13.2). P75NTR activates pro-survival as well as pro-apoptotic signals depending on the cellular context and the ligand.129 Specifically, glial cell line-derived neurotrophic factor (GDNF), brain-derived growth factor (BDNF) and basic fibroblast growth factor (bFGF) have been

shown to protect dopaminergic neurons against PD.128 BDNF, bFGF and nerve growth factor (NGF) levels are found to be decreased in PD.130,131 NGF

is found to be low in MPTP-treated mice132 and after serum deprivation in cell cultures.133

13.3.2Signal Transducers, Intracellular Messengers and Upstream Elements

In response to an initial stimulus, specific molecular switches are turned on to transduce the message downstream using intracellular signaling pathways and e ectors depending on the cellular context.

13.3.2.1Ca21

Increased intracellular Ca21 levels could be an initial event in PD. An excessive Ca21 influx through NMDA receptors from glutamate overstimulation and a constant influx through L-type Ca21 channels during pacemaking function

262

Chapter 13

could be contributing factors to Ca21 imbalance in dopaminergic neurons. Cybrids containing dysfunctional mitochondria from PD patients have been shown to increase intracellular Ca21 levels correlating with increased Calpain activation (Figure 13.2).134 Intracellular Ca21 levels are selectively increased by exposure to MPP1.135 Supporting the role of increased intracellular Ca21 in PD, midbrain cells containing calbindin, a Ca21 binding protein, are spared from degeneration in PD patients and MPTP-induced parkinsonism.136 The resulting Ca21 imbalance is associated with altered membrane permeability, abnormal microtubule function and activation of Ca21-dependent enzymes.

In the mitochondria, loss of PINK1 function a ects Ca21 e ux resulting in increased mitochondrial Ca21 levels and ROS production (Figure 13.1).137 Elevated intracellular Ca21 levels arrest microtubule-based mitochondrial movement seemingly by a ecting formation of kinesin-Miro-Milton complex.72 As an intracellular signaling messenger, Ca21 can activate calmodulin/ Ca21-calmodulin-dependent protein kinase (CaM/CaMKII), calpain and protein kinase C (PKC) in the cytosol (Figure 13.2). Upon CaM activation by Ca21, CaMKII is activated. CaMKII activation is associated with increased mitochondrial ROS production either by activation of Ca21-dependent dehydrogenases that stimulate oxidative phosphorylation or via activation of downstream targets such as MAO. Also, CaM functions as a co-activator of nNOS. nNOS is involved in production of NO from L-arginine. NO is an unconventional neurotransmitter and is important in messenger functions during inflammatory responses in the SN and in signaling pathways in striatal neurons. Elevated nNOS activity could contribute to dopaminergic cell death in SN by increasing NO available for peroxynitrite production.

Calpains are cystein proteases. Calpains have been found to cleave several substrates including cytoskeletal components, proteases and cell signaling

molecules. Calpain activity is increased in PD patients as well as in the MPTP and Rotenone rodent model.138,139 Calpain has been involved in the induction

of apoptosis through conversion of p35 to p25 (Figures 13.2 and 13.3).140 p25 causes cdk5 to be constitutively activated and mislocated. Increased p25/cdk5 activity cause degeneration and apoptotic cell death, suggestively mediated by phosphorylation of Prx2, a Prx located in the cytoplasm of neurons.141 Calpain has shown to cleave a-synuclein in vitro, which di erentially a ects a-synuclein aggregation because calpain cleavage of a-synuclein monomers prevents

further oligomerization, while cleavage of a-synuclein fibrils promotes further co-assembly.142

PKC is an important initiator kinase in neurodegeneration. PKC is a family of serine/threonine kinases divided into four groups: the conventional, the novel PKCs, the atypical PKC and a PKN subfamily. The conventional PKCs comprise PKCa, PKCb and PKCg, which are activated by a combination of diacylglycerol (DAG) and phospholipid, and Ca21-dependent phospholipid binding (Figures 13.2 and 13.3). The novel PKCs include PKCd, PKCe, PKCy and PKCZ and di er in that they do not respond to Ca21. The atypical PKC and the PKN subfamily do not depend on Ca21 or DAG for activation but are allosterically activated.143 Given their activation under elevated Ca21 levels,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]