Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Extracellular and Intracellular Signaling (книга).pdf
Скачиваний:
20
Добавлен:
31.03.2015
Размер:
13.39 Mб
Скачать

50

Chapter 3

di erent activities of leptin might be the result of di ering patterns of AMPK subunit expression in the various tissues, or of di erential expression of the AMPK activators LKB1, CaMKK or other possibilities.63

The mechanism by which leptin exerts its activities on AMPK activation are still unclear. However, several recent reports are uncovering these mechanisms. Uotani et al. have described that leptin activates AMPK in hepatic cells in a manner independent of phosphotyrosine residues of the long-form leptin receptor, whereas this mechanism involved a JAK2-dependent pathway.69 It has been reported that the absence of the protein tyrosine phosphatase 1B (PTP1B) at the hypothalamic level, which regulates JAK2 phosphorylation,70 increased leptin sensitivity by decreasing hypothalamic AMPK activity71 and increasing peripheral AMPK activity. Very recently it has also been reported that the activity of skeletal muscle AMPK parallels hypothalamic leptin sensitivity and metabolic phenotype in transgenic mice over-expressing leptin. Moreover it was further indicated that the activation of skeletal muscle AMPK was mediated by the hypothalamic melanocortin pathway.72 These results in turn revealed a complex mechanism for the regulation of peripheral leptinmediated AMPK activities, establishing a link between central and peripheral actions of leptin AMPK-mediated e ects.

3.3.5SOCS3

Finally, leptin receptor activation also recruits the suppressor of cytokine signaling 3 (SOCS3), a signaling protein involved in a negative feedback of leptin signal transduction.73 The SOCS3-mediated leptin signaling inhibition mechanism has been postulated by several studies. It was found that SOCS3 inhibits the leptin-induced tyrosine phosphorylation of JAK2 and co-precipitates with this protein in leptin-treated cell lysates.74 Indeed, it was also reported that SOCS3 mediated the inhibition of leptin signaling at the phosphotyrosine residue Tyr985, where SOCS3 was bound and consequently dampened STAT3 signaling.75 Also of note, SOCS3 expression is rapidly induced upon STAT3 activation, which is likely the main mechanism of leptin receptor self-regulation. Inhibition of phosphotyrosine residue Tyr1138, which is a binding site of the leptin receptor that elicits STAT3 recruitment, improved leptin receptor signaling inhibition caused by chronic stimulation.76

SOCS3 signaling has been related functionally to the establishment of leptin and insulin resistance.58,73 It has been described that reducing SOCS3 activity, by neuron-specific knockout or by global knockout, resulted in enhanced STAT3 expression and leptin-mediated weight-reducing e ects.77,78 Likewise, It has been reported that SOCS3 inhibited insulin signaling in the adipose tissue of obese mice (Figure 3.1).79

3.4 Leptin Receptor Interactions

Apart from the above-mentioned signaling pathways elicited by the leptin receptor, it is noteworthy that the leptin receptor also interacts with other

One Receptor for Multiple Pathways: Focus on Leptin Signaling

51

proteins. These molecules may modulate leptin receptor signaling and introduce another piece of complexity in the generated signals.

3.4.1Apolipoprotein D

Apolipoprotein D (Apo D) is widely expressed in mammalian tissues with a remarkable expression at the central level (brain). This apolipoprotein, from a structural point of view, does not have a relevant similitude with other apolipoproteins. By contrast, Apo D has been considered a lipocalin, due to its structural homology with lipocalins, a family of lipid-binding proteins involved in the transport of lipids and small hydrophobic molecules. The functional relevance of this lipocalin is supported by the fact that genetic variants of Apo D are associated with abnormal lipid metabolism and increased risk of developing the metabolic syndrome.80 In line with this, it has been reported that Apo D and the leptin receptor are co-expressed in neurons of the hypothalamic arcuate and paraventricular nuclei, two brain areas that are known to be involved in food intake and body-weight regulation. Moreover, it has also been described, in the same study, that Apo D interacted specifically with the cytoplasmic portion of the long-form leptin receptor, but not with the short form Ob-Ra.81 All together, these data suggested that Apo D may be involved in leptin receptor signaling and consequently in its functions such as bodyweight regulation and energy homeostasis.

3.4.2Sorting Nexin Molecules

The sorting nexins (SNXs) are a family of PX domain-containing proteins widely expressed in mammalian tissues. Despite their hydrophilic nature, the sorting nexins are found partially associated with cellular membranes. SNXs have been suggested to be involved in pro-degradative sorting, internalization, endosomal recycling, or simply in endosomal sorting.82 Among the large family of sorting nexins, several sorting nexins, such as SNX1, SNX2, SNX4 and SNX6, have been co-immunoprecipitated with receptors with tyrosine kinase activity, like endothelial growth factor receptor EGFR, plateletderived growth factor receptor and insulin receptor.83,84 Intriguingly, these

sorting nexins were also associated with the leptin receptor long form, but not with the short or medium isoforms.83,84 As a whole, these data suggest

that sorting nexins might control leptin receptor tra cking by means of its intracellular region and, consequently, this interaction could also control leptin receptor signaling.

3.4.3Diacylglycerol Kinase Zeta

Diacylglycerol kinases (DGKs) are involved in the regulation of intracellular levels of diacylglycerol and phosphatidic acid, as well as in the synthesis of triacylglycerols.85 Among these kinases there is diacylglycerol kinase zeta (DGKz), which is characterized by its four C-terminal ankyrin repeats and is

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]