- •История электроэнергетики Конспект лекций
- •Предисловие
- •Лекция 1. Назначение курса «История электроэнергетики»
- •Лекция 2. Электрическая цепь. Схема замещения
- •Лекция 3. Электрический ток. Электрическое поле
- •Лекция 4. Эдс источника электрической энергии. Напряжение
- •Постоянные и мгновенные значения тока, напряжения и эдс
- •Лекция 5. Идеализированные элементы электрической цепи
- •Лекция 6. Направление эдс, тока, напряжения. Второй закон Кирхгофа.Электрические цепи переменного тока. Характеристики переменного тока
- •Второй закон Кирхгофа
- •Электрические цепи переменного тока. Характеристики переменного тока
- •Метод векторных диаграмм
- •Лекция 7. Действующее значение переменного тока. Связь между током и напряжением в элементах электрической цепи тока
- •А в
- •Индуктивность
- •Емкость
- •Лекция 8. Закон Ома для цепи переменного тока. Активное, реактивное и полное сопротивления
- •Лекция 9. Мощность цепи переменного тока
- •Лекция 10. Трехфазные электрические цепи
- •Лекция 11. Принцип действия синхронного генератора Принцип действия синхронного генератора
- •Соединение фаз по схеме «звезда»
- •Связь линейного напряжения с фазным
- •Связь линейного и фазного тока
- •Соединение фаз синхронного генератора и нагрузки по схеме «треугольник»
- •Мощность в трехфазных цепях переменного тока
- •Лекция 12. Трансформаторы Конструктивная схема простейшего трансформатора
- •Принцип действия трансформатора
- •Коэффициент трансформации трансформатора
- •Саморегулирование магнитного потока трансформатором
- •Трехфазные силовые трансформаторы
- •Потери активной мощности трансформатора
- •Энергетическая диаграмма трансформатора
- •Кпд трансформатора
- •Зависимость коэффициента полезного действия от нагрузки
- •Лекция 13. Электрические машины
- •Основные понятия и определения
- •Лекция 14. Устройство машин переменного тока
- •Электрические машины переменного тока
- •Конструктивное исполнение электрических машин переменного тока
- •Роторы асинхронных машин
- •Лекция 15. Принцип действия асинхронного двигателя
- •Однофазный асинхронный двигатель
- •Преимущества и недостатки трехфазного асинхронного двигателя с короткозамкнутым ротором
- •Лекция 16. Электрические машины постоянного тока
- •Принцип действия генератора постоянного тока
- •1) Индуктор; 2) пазы; 3) обмотка; 4) якорь; 5) корпус (статор). Электрическая схема двигателя постоянного тока независимого возбуждения
- •Принцип действия простейшего двигателя постоянного тока
- •1) Ток якоря Iя; 2) эдс якоря Ея; 3) обмотка возбуждения;
- •Эдс обмотки якоря
- •Лекция 18. Эдс обмотки якоря
- •Электромагнитный момент, развиваемый в двигателе постоянного тока
- •Назначение пускового сопротивления в схеме двигателе постоянного тока независимого возбуждения
- •Лекция 19. Основные уравнения дпт независимого возбуждения Регулирование скорости двигателя постоянного тока
- •Якорный способ
- •Полюсное регулирование
- •Реостатное регулирование
- •Основные конструктивные узлы и схема включения трансформатора тока
- •Особенности эксплуатации трансформаторов тока
- •Измерительные трансформаторы напряжения
- •Условные и графические обозначения трансформатора напряжения
- •Лекция 21. Системы электроснабжения. Определения, терминология.
- •Принцип построения систем электроснабжения
- •Лекция 22. Основные этапы проектирования систем электроснабжения
- •Лекция 24. Основные мероприятия и принципы энергосбережения
- •Основные положения (принципы), обеспечивающие успех при энергосбережении
- •Лекция 25. Уравнение Максвелла. Вихревое электрическое поле.
- •Ток смещения
- •Особенности тока смещения
- •Лекция 26. Закон изменения напряжения на обкладках конденсатора
- •Напряженность электрического поля внутри конденсатора
- •Лекция 27. Уравнения Максвелла для электромагнитного поля
- •Лекция 28. Компенсация реактивной мощности
- •Содержание
- •«История электроэнергетики»
- •«История электроэнергетики» для студентов специальности 140211 – Электроснабжение
- •3. Рекомендации для сдачи зачета и экзамена
- •Рекомендуется для удобства работы распечатать этот материал Для подготовки к сдаче экзамена и зачета необходимо:
- •3.2 Рекомендации для сдачи зачета и экзамена
- •Теоретическая работа
- •Практическая работа
- •Задания по дисциплине
- •Практическая работа (обязательная) (3,6 балла)
- •2 Неделя рубежного контроля 23-28 ноября: Практическая работа (дополнительная) (2,4 балла)
- •Теоретическая работа (14,4-24 балла)
- •Практическая работа (обязательная) (3,6 балла)
- •3 Неделя рубежного контроля 11-16 января: Практическая работа (дополнительная) (2,4 балла)
- •Теоретическая работа (19,2-32 балла)
- •Практическая работа (обязательная) (4,8 балла)
- •Теоретическая работа (4,8-8 балла)
- •Практическая работа (обязательная) (3,6 балла)
- •2 Неделя рубежного контроля 26 апреля-01 мая: Практическая работа (дополнительная) (2,4 балла)
- •Теоретическая работа (14,4-24 балла)
- •Практическая работа (обязательная) (3,6 балла)
- •3 Неделя рубежного контроля 07-12 июня: Практическая работа (дополнительная) (2,4 балла)
- •Теоретическая работа (19,2-32 балла)
- •Практическая работа (обязательная) (4,8 балла)
- •Теоретическая работа (4,8-8 балла)
- •14-19 Июня Ликвидационная неделя
- •3.3 Контрольные вопросы и ответы на контрольные вопросы
- •3.4 Экзаменационные билеты
- •4. Содержание раздела данной дисциплины по видам учебных занятий
- •4.1 Содержание лекций
- •4.2. Самостоятельная работа студентов
- •7. Литература.
- •7.1 Основная литература для домашних занятий
- •7.2 Дополнительная литература
- •7.3 Периодическая литература для домашних занятий
Саморегулирование магнитного потока трансформатором
При эксплуатации трансформатора в системах электроснабжения выполняется следующие условия :
ƒ = const, U1 = const.
Отклонение напряжения
, (11.15)
гдеUфакт – действительное значение напряжения в сети,
- номинальное значение напряжения.
Т.к. U1 = const и ƒ = const, то из уравнения U1≈Е1=4,44∙ƒ∙W1∙Фм следует, что магнитный поток Фм постоянен.
Вывод: магнитный поток трансформатора при его работе не зависит от нагрузки, т.е не зависит от токов I1 и I2. Это свойство постоянства магнитного потока называется саморегулированием магнитного потока.
Трехфазные силовые трансформаторы
Подразделяются:
на групповые;
трехстержневые.
Групповые трансформаторы – это трансформаторы с отдельным для каждой фазы сердечником (рис .11.3).
Рис. 11.3. Групповой трансформатор |
Рис. 11.4. Трехстержневой трансформатор |
Ах, Ву, Сz – обозначения выводов обмоток высшего напряжения;
ах, ву, сz – обозначения обмоток низшего напряжения.
Групповой трансформатор состоит из трех однофазных трансформаторов. Такие трансформаторы используются при мощностях Sн ≥ 300 кВА, где Sн – полная мощность трансформатора.
Трехстержневые – это трансформаторы с общим для всех фаз сердечником (рис. 11.4).
Стержень – это часть магнитопровода, на котором расположены обмотки. Трехстержневые трансформаторы меньше по массе и габаритам, чем групповые при одинаковой мощности. Однако один однофазный трансформатор меньше по массе и габаритам, чем трехстержневой. Для группового трансформатора достаточно в качестве резерва иметь один запасной однофазный трансформатор, а для трехстержневого – точно такой же трехстержневой трансформатор. Это значительно дороже, поэтому преимущество групповых трансформаторов проявляется при больших мощностях .
Потери активной мощности трансформатора
Потери активной мощности трансформатора ∆Р подразделяется на:
Переменные ∆Рм (потери в меди);
Постоянные ∆Рс (потери в стали).
Рассмотрим ∆Рм – потери в обмотках трансформатора. Электрический ток, проходя по обмоткам трансформатора, по закону Джоуля–Ленца (Q=I·U·t) нагревает их. Это тепло рассеивается в окружающем пространстве, т.е. теряется.
Вывод: ∆ Рм – потери активной мощности в проводниках обмоток. Наиболее часто обмотки изготавливают из меди отсюда и название потери в меди. Рассмотрим двухобмоточный однофазный трансформатор.
Рис. 11.5. Двухобмоточный однофазный трансформатор
, (11.16)
где ∆Рм – потери активной мощности в первичной обмотке.
При изменении нагрузки zн, т.е. при изменении I1 и I2 ∆Рм также меняется. В этом смысле потери ∆Рм называют переменными. Таким образом, постоянство или не постоянство потерь будем связывать с нагрузкой трансформатора. Если ∆Р с изменением нагрузки трансформатора не меняется, то такие потери называют постоянными. Если ∆Р с изменением нагрузки трансформатора меняется, то потери называют переменными. Так как потери ∆Рм не расходуются на совершение полезной работы, то их стараются уменьшить. Из (11.16) следует, что ∆Рм ~ I и R, таким образом, для уменьшения потерь ∆Рм следует уменьшить ток I или сопротивление R, но уменьшить ток нельзя, т.к. его величина зависит от нагрузки, т.е. от режима работы трансформатора и не может меняться по нашему желанию.
Вывод: для уменьшения ∆Рм1 и ∆Рм2 целесообразно уменьшить R1 и R2.
, (11.17)
где – удельное сопротивление,L – длина проводника, S – площадь поперечного сечения этого проводника.
L и S определяется конструкцией трансформатора, его номинальной мощностью, т.е. для уменьшения R следует уменьшить. Поэтому обмотки трансформатора изготавливают из материала с малым значением удельного сопротивления (Al и Cu).
Рассмотрим потери ∆Рс. Эти потери представляют собой потери активной мощности в стали трансформатора (магнитопровод). Магнитный поток замыкается по сердечнику трансформатора и при своём изменении нагревает его. Это тепло рассеивается в окружающем пространстве, т. е теряется. Потери ∆Рс состоят из двух составляющих, т.е.
∆Рс=∆Рв+∆Рг, (11.18)
где ∆Рв – потери на вихревые токи (токи Фуко),
∆Рг – потери на гистерезис (перемагничивание сердечника).
Рассмотрим потери ∆Рв. Если сплошное электропроводное тело поместить в переменное магнитное поле, то в этом теле по закону электромагнитной индукции возникает ЭДС, а, следовательно, и ток.
, (11.19)
где IВ1 – действующее значение вихревого тока,
Rc1 – сопротивление стали.
. (11.20)
Из (11.19) и (11.20) следует:
. (11.21)
Вывод: для уменьшения потерь ∆Рв1 следует уменьшить ЭДС Ев1 и увеличить сопротивление Rc1. Например,
Так как ЭДС Е~ƒ и потоку Фм.. В системах электроснабжения ƒ=const и Фм=const. Поэтому Ев1≈const.
Рассмотрим сопротивление Rc1.
, (11.22)
где с – удельное омическое сопротивление стали,
Lc1 – длина пути, по которой замыкается ток Iв1,
Sc1 – площадь поперечного сечения стали, по которой замыкается ток Iв1.
Из (11.22) следует, что для уменьшения потерь ∆Рс следует увеличить Lc1, но следует помнить Lc1 определяется размерами трансформатора, и увеличить её нельзя. Для увеличения с сердечник трансформаторов изготавливают из сплавов с большим с. Для уменьшения площади сечения Sc1 сердечник трансформатора шихтуется, т.е. изготавливается из отдельных пластин электротехнической стали, изолированных друг от друга.
Так как Sc2 < Sc1 то Rc1 < Rc2 т. е РВ1 > РВ2.
Вывод: при эксплуатации трансформаторов ƒ и Фм – остаются постоянными, а так как РВ1~ ƒ2 и Ф, то и ∆РВ=const.
Рассмотрим потери ∆РГ (потери на гистерезис). Известно, что потери на гистерезис ∆РГ пропорциональны площади петли гистерезиса SГ.
Петля гистерезиса – кривая в координатных осях В и Н, которая образуется при циклическом изменении Н.
Индукция магнитного поля
В=μ·μ0·Н, (11.23)
где Н – напряженность магнитного поля (характеризует поле в вакууме),
μ – относительная магнитная проницаемость среды,
μ0 - магнитная постоянная. μ0 =4π·10-7 Гн/Н.
Относительная магнитная проницаемость среды показывает, во сколько раз поле в данной среде больше или меньше чем вакууме.
Для сердечников трансформаторов используют электротехнические стали, у которых относительная магнитная проницаемость среды μ=103÷5·105.
Существуют специальные сплавы (Ni + Fe) у которых μ достигает 2·105.
Нс – коэрцетивная сила, т.е. значение напряженности внешнего поля, при котором индукция внутри вещества равна нулю.
Вг – остаточная индукция т. е. значение индукции в материале при напряжённости внешнего поля равного нулю.
Для уменьшения потерь на гистерезис ∆Рг используют сплавы с узкой петлёй гистерезиса так называемые магнитомягкие сплавы.
Так как Sг1 < Sг2 , то ∆Рг1 < ∆Рг2, значит Sг не зависит от I1 и I2 (т.е. от нагрузки).
Вывод: т.к. потери ∆Рв и ∆Рг постоянные тогда ∆Рс=∆Рв+Рг=const.