
- •1 Вопрос. Физико-химические свойства.
- •2 Вопрос
- •Цветные реакции на белки.
- •3 Вопрос. Белки, их биологическая роль:
- •4 Вопрос Совместные представления о пространственной структуре белков.
- •5 Вопрос. Общая характеристика сложных белков: нуклеотиды, хромопротеиды, фосфопротеиды, гликопротеиды, липопротеиды.
- •6 Вопрос Расщепление аминокислот в печени.
- •7 Вопрос Хромопротеиды и их физиологическая функция.
- •8 Вопрос Обмен белков.
- •Переваривание
- •Пять основных путей метаболизма аминокислот.
- •9 Вопрос
- •10 Вопрос Биосинтез белка. Регуляция синтеза.
- •Главные открытия 50-х годов 20 века.
- •Стадии биосинтеза
- •Моменты инициирования
- •Генетический код и его характеристики.
- •11. Рибосомы, их строение и функции в синтезе белка. Инициация биосинтеза. Элонгация, терминация.
- •12.Регуляция биосинтеза
- •13 Вопрос Строение ферментов
- •Свойства ферментов.
- •14 Вопрос Ингибирование ферментов. Ингибиторы.
- •Обратимое ингибирование. Типы.
- •15 Вопрос Отличие белков-ферментов от других катализаторов.
- •Химизм ферментативной реакции. Факторы, влияющие на способность фермента ускорять реакцию.Пример.
- •Факторы, влияющие на способность ферментов ускорять реакцию.
- •16 Вопрос. Мультиферментные системы.
- •Изоферменты
- •17 Вопрос. Регуляторные ферменты (регуляция ферментативной активности).
- •Аллостерическая регуляция.
- •18 Вопрос
- •3 Класс – гидролазы
- •19 Вопрос
- •2 Класс – трансфераза
- •20 Вопрос
- •22 Вопрос. Оксидоредуктазы
- •23 Вопрос. Биоэнергетика. Биологическое окисление.
- •Аэробные (флабиновые) ферменты.
- •Коанзим – ку (убиксины)
- •Оксидазы
- •Цитохромы.
- •Процесс окисления начинается с окисления субстрата:
- •Энергетический обмен:
- •24. Окислительное фосфорилирование, сопряженное с дыханием. Теория Митчела.
- •25. Нуклеопротеиды. Их строение. Биологически важные моно - , динуклеотиды.
- •26. Рнк – локализация в клетке, микро и макроструктура. Биологическая роль.
- •27. Днк – структура, нуклеотидный состав, принципы комплиментарности и ее биологическая роль.
- •28. Углеводы, их биологическая роль, классификация. Структура и свойства моносахаридов.
- •29. Строение и свойства дисахаридов.
- •30 Вопрос. Гетерополисахариды
- •31 Вопрос. Обмен углеводов
- •Инсулин
- •Глюкогон
- •32 Вопрос Гликолиз (распад глюкозы)
- •Гликолиз
- •Спиртовое брожение
- •33 Вопрос. Цикл Кребса
- •Пентозный цикл
- •34 Вопрос. Липиды Классификация. Наименование липидов. Основные понятия
- •35 Вопрос. Фосфолипиды (мембранные липиды)
- •Глицерофосфолипиды
- •Сфингофосфолипиды
- •Желчные кислоты
- •38. Синтез триглицеридов и фосфоглицеридов.
- •39Вопрос. Обмен липидов. Внутриклеточное превращение. Кетонные тела.
- •Внутриклеточное превращение
- •40 Вопрос Кетонные тела
25. Нуклеопротеиды. Их строение. Биологически важные моно - , динуклеотиды.
Известно, что структурными единицами нуклеиновых кислот являются мономерные молекулы – мононуклеотиды. Следовательно, нуклеиновые кислоты представляют собой полинуклеотиды.
Компоненты нуклеиновых кислот:при полном гидролизе НК образуются пуриновые и пиримидиновые азотистые основания, моносахарид пентоза (рибоза или дезоксирибоза) и фосфорная кислота. Все НК делятся на два типа в зависимости от того, какой моносахарид входит в состав. НК называется рибонуклеиновой (РНК), если в ее состав входит рибоза, или дезоксирибонуклеиновой (ДНК), если в ее состав входит дезоксирибоза.
Пентозы в НК присутствуют всегда в β – D– фуранрзной форме:
D-2-дезоксири-
боза β-D-2-дезокси-
рибофураноза
Пуриновые пиримидиновые азотистые основания, входящие в состав НК, являются производными ароматических гетероциклических соединений – пурина и пиримидина. Молекула пурина состоит из двух конденсированных колец: пиримидина и имидазола. Среди пуриновых азотистых оснований главную роль играют аденин (А), гуанин (Г), а среди пиримидиновых – цитозин (Ц), урацил (У), тимин (Т):
Цитозин Урацил Аденин Гуанин
Тимин
В состав ДНК входят аденин, гуанин, цитозин, тимин; в РНК вместо тимина присутствует урацил.
Кроме главных азотистых оснований в НК присутствуют в небольших количествах – минорные основания. В состав ДНК высших организмов входит 5 – метилцитозин. Особенно много минорных компонентов содержится в транспортных РНК: тиоурацил, дигидроурацил, ксантин.
Молекулы пиримидинов имеют плоское строение, а молекулы пуринов – почти плоское. Все они, кроме аденина, существуют в таутомерных формах. Урацил может находиться в форме или лактима, или лактама:
Лактим Лактам
В процессе обмена веществ растений и животных пуриновые основания образуют ряд продуктов: мочевую кислоту, кофеин, теобромин:
Нуклеозиды содержат пуриновое или пиримидиновое основание, соединенное с углеводом N-гликозидной связью. В составе нуклеиновых кислот обнаруживаются только β-нуклеозиды. Примером могут служить два мононуклеотида: аденозин-5'-монофосфорная кислота (АМФ) и ци-тидин-5'-монофосфорная кислота (ЦМФ):
(над стрелками написать N-гликозидные
связи )
АМФ ЦМФ
Среди продуктов ферментативного гидролиза ДНК и РНК обнаруживаются, помимо нуклеозид-5'-монофосфатов, также нуклеозид-3'-монофосфаты. Положение фосфата определяется местом раз-рыва фосфодиэфирной связи между соседними нуклеотидами, что указывает на характер связи нуклеотидов через остаток фосфорной кислоты, соединяющий 3' и 5' углеродные атомы пентозы.
Мононуклеотиды и их производные, а также динуклеотиды присутствуют в клетках в свободном виде и играют важную роль в обмене веществ. В частности, нуклеотидную структуру имеют многие коферменты, включая коферменты оксидоредуктаз. Мононуклеотиды, присоединяя еще один остаток фосфата, образуют фосфоангидридную связь (наподобие связи, имеющейся в пирофосфате) и превращаются в нуклеозиддифосфаты (соответственно они обозначаются сокращенно АДФ, ГДФ, УДФ, ЦДФ и ТДФ). Последние, присоединяя еще один остаток фосфата, образуют нуклеозидтрифосфаты (соответственно обозначаются АТФ, ГТФ, УТФ, ЦТФ и ТТФ).
При гидролизе РНКобразуются рибоза, аденин, гуанин, урацил, цитозин, фосфорная кислота.
При гидролизе ДНК– дезоксирибоза, аденин, гуанин, цитозин, тимин, фосфорная кислота.
Где находятся:
ДНК: 99,9% - находится в ядре клетки, 0,01% - в митохондриях.
РНК: может быть и в ядре клетки, где она образуется на соответствующем месте ДНК, в рибосомах (много).
Функции:
ДНК: наследственный аппарат клетки. Вся информация о НК, белках клетки – в молекуле ДНК.
РНК: транспортная, матричная..в зависимости от классификации, выполняет ту или иную функцию. Матричная – информация, транспортная - составная часть рибосомы.