
- •31. Гормоны, общая характеристика, химическая природа. Механизм действия.
- •32. Гормоны стероидной природы. Механизм действия.
- •32.Адреналин.
- •33.Иодированные тиронины
- •39. Половые гормоны.
- •40. Паратгормон.
- •41. Биологическое окисление.
- •32. Общая схема катаболизма питательных веществ.
- •43.Циклкребса
- •44. Современные представления о тканевом дыхании.
- •45. Главная цепь дыхательных ферментов
- •46 Химическая природа дегидрогеназ. Над Зависимые аегидрогеназы
- •46. Гликозамнногликаны.
- •48 Цитохромы.
- •55. Гннтез и расщеп.Тение гликоееиа
- •56 Аэробный метаболизм углеводов
- •59. Окислительное декарбоксилирование пирувата.
- •60. Патология углеводного обмена.
- •60. Патология углеводного обмена.
- •62. Классификация липидов.
- •64. Триацилглицериды. Жирные кислоты.
- •65. Стериды и стерины
- •69. Обмен холестерола.
- •72 Ацетил КоА
- •74. Синтез рнк.
- •74 Транспорты»формы лнпядов
- •75. Переваривание белков в желудочно-кишечном тракте.
- •76 Дезаминирование, трансаминирование
- •77. Биогенные амины.
- •78. Переаминирование аминокислот.
- •80. Судьба безазотистого остатка аминокислот.
- •82.Синтез мочевины.
- •83. Глутамин и аспарагин. Механизм беопасного транспорта аммиака.
- •84. Биосинтез белков.
- •85.Биосинтез пуриновых и пиримидиновых.
- •86 Мочевая кислота.
- •87. Нуклеопротеиды, нуклеиновые кислоты Структура я биологическая роль нуклеиновых кислот.
- •88. Первшчпая структура рнк.
- •89. Генетический код
- •90. Роль тРнк
- •91. Особенности структуры матричной рнк.
- •92. Репликация днк.
- •94. Химический состав слюны.
- •95. Слюна как биологическая жидкость.
- •96. Особенности химического состава эмали зуба.
- •97. Ферменты слюны.
- •98. Кристаллы апатитов.
- •100. Химический состав эмали зуба.
- •101. Химический состав дентин.
- •102. Химический состав и рольПульПы
- •103. Теории минерализации.
- •104. Химический состав кости
- •105. Влияние витаминов на полость рта.
- •106. Содержание остаточного азота.
- •107. Витамин с, влияние на обмен тканей полости рта.
- •108. Гормоны влияющее на обмен минерализованных тканей.
- •109. Влияние питания на состояние зубов.
- •110. Микроэлементы.
- •111. Сахарные кривые.
- •108. Патологические составные части мочи.
- •115. Содержание мочевой кислоты
- •116. Содержание билирубина в крови.
- •117. Кальций сыворотки.
- •119. Общая кислотность.
- •120. Диагностическое згиачеине определения активности аминотрансферазы.
- •123. Кетоновые тела (диагностическое значение).
- •124. Диагностическое определение белка и активности амилазы.
41. Биологическое окисление.
Основным путем выделения энергии служит окислительное расщепление Именно окислительным путем разрывается основное количество химических святей питательных веществ Например аминокислоты образующиеся при гидролизе белка расщепляются затем до углекислого газа воды и аммиака Какие же способы окисления веществ реализуются в клетке?
Соединения могут окислятся по современным представлениям тремя различными способами
1 Реакции оксиденации Т е окисление путем прямого присоединения кислорода к окисляемому субстрату 2 Путь передачи электронов Некоторые реакции окислительные сопровождаются только потерей электронов, а затем происходит присоединение протонов 3 главный (основной) Путем отщепления атомов водорода от окисляемого субстрата - дегидрирование Принято различать 2 вида дегидрирования
а) Аэробное б) Анаэробное
В чем различие? Суть различия сводится к вопросу о первичном акцепторе отщепленного водорода Если атомы водорода отщепленные от субстрата переносятся сразу на кислород - аэробное Если отщепленные атомы водорода переносятся на соединения отличные от кислорода - анаэробное
Классификация фермента» участвующих в биоокислении. Оксиредуктазы Все ферменты катализирующие окислительно-восстановительные процессы Какие же здесь группы
1 Отщепление атомов водорода от окисляемого субстрата катализируется ферментами оегиАрогинюами Их разделяют на 2 подподкласса
а) Аэробные дегидрогиназы
б) Анаэробные дегидрогиназы
В чем разница между ними? Аэробные дегидропшазы катализируют перенос отщепленных атомов водорода от окисляемого субстрата на кислород в итоге образуется токсичная перекись водорода
H-S-H + О2 -> S окисл + Н2О2
Анаэробные дегидрогиназы катализируют перенос отщепленных атомов водорода на какое-то соединение отличающееся от кислорода (НАД, ФАД, ФМН), а субстрат окисляется, потеряв 2 атома водорода
H-S-H + X ->ХН2 + Зокисл
2 Оксигеназы Ферменты катализирующие присоединение кислорода или реакцию оксидинации Принято длить на 2 группы
а) Монооксигеназы (гидроксилазы) присоединяют атомарный кислород к окисляемому субстрату
б) Дноксигеназы присоединяют молекулу кислорода а) р
H-S + О2 + КН2 -» S ^H2O + Кокисл
Реакции монооксигеназного типа требуют еще одного участника так называемого Косубстрата Чаще всего выступает восстановленный НАД К субстрату присоединяется один атом кислорода
б) H-S-H + О2 >HO- S-OH ->S--O + H2O
3 Цитохромы Катализируют окисление веществ путем отдачи электронов Гемовое железо В одном из цитохромов имеется так же атом меди.
4 Вспомогательные ферменты биологического окисления К ним относятся такие ферменты как католаза и пероксидаза. которые играют защитную роль разрушая перекись водорода или органические перекиси образующихся в ходе окислительных процессах Перекиси представляют собой достаточно агрессивные соединения которые могут вызвать значительные изменения в клеточных структурах ФУНКЦИИ БИОЛОГИЧЕСКОГО ОКИСЛЕНИЯ
1 Важнейшей функцией биологического окисления является несомненно высвобождение энергии которая в дальнейшем используется в эндоорганических процессах
2 В ходе окисления питательных веществ образуется ряд низкомолекулярных соединений, которые клетка использует потом для биосинтеза Назыв - пластическая функция Например синтез аминокислот из продуктов окисления глюкозы или жиров
используется в биосинтетических реакциях Генерация восстановительных эквивалентов (потенциалов). 4
Окислительные процессы несут защитную роль Многие ксенобиотики обезвреживаются путем окисления в том числе многие лекарственные препараты 5. Огромная роль в поддержании температуры тела Таким образом существование живых существ невозможно без окислительных процессов