Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архив WinRAR / 1-30 / 30-124.doc
Скачиваний:
132
Добавлен:
25.03.2015
Размер:
677.38 Кб
Скачать

69. Обмен холестерола.

Суточная потребность человека в холистероле составляет около 1 гр Причем вся потребность в этом соединении может удовлетворяться с помощью эндогенного синтеза Пищевой холистерол так же эффективно усваивается человеком V здорового человека поступление \одистерола с пищей и его эндогенный синтез хорошо сбалансирован Так например поступление с пищей в течении суток 2-3 гр холистерола полностью блокирует его эндогенный синтез

Основным органом в котором идет синтез холистерола является в печень.В печени человека синтезируется от 50 до

80% эндогенного холистерола, 10-15% синтезируется в клетках тонкого кишечника и около 5% образуется в коже, остальное в других органах и тканях Т е объем синтеза в других органах и тканях не названных (дентине, цементе) вообще незначителен, хотя ферментная система обеспечивающая синтез этого соединения присутствует практически во всех органах и тканях

В условиях обычного пищевого рациона во внутреннюю среду организма поступает около 300 мг экзогенного хопистерола 500 - 700 мг холистерола организм обычно при смешанной диете получает за счет эндогенного синтеза

Общее содержание холестерола в организме человека примерно 140 гр. Основная масса этого соединения

включена в состав клеточных мембран, однако около 10гр холистерола постоянно содержится в плазме крови, входя в состав липопротеидов Концентрация холистерола в норме составляет 3,5-6,8 млмоль/л Причем примерно всего 2/3 холистерола плазмы крови представлена в ней в виде сложных эфиров холистерина с жирными кислотами те стероиды. Жирные кислоты связанные с холистерином это преимущественно линоливая и олеиновая Избыток холистерола в клетках запасается в виде эфиров олеиновой кислоты, в то же время в состав мембран входит только свободный холистерол

Биологическая роль холистерола.

Холистерол используется в организме прежде всего 1 для синтеза желчных кислот в печени 2 из на о синтезируются все стероидные гормоны 3 в коже из него образуется "'-дегидрохолистерин, который под действием УФ превращается в витамин D Как выводится холистерол?

Избыток холистерола выводится из организма желчью. Последнее время доказано, что часть избыточного холнстерина может поступать в просвет кишечника непосредственно через его стенки Таким образом холистериновый гамеостаз в организме является результатом динамического равновесия во-первых процессов его поступления в организме эндогенного синтеза, и во-вторых процесов использования холистерола для нужд клеток и его выведение из организма Как синтезируется холистерол?

Он синтезируется в клетках из двух углеродных группировок ацетилКоА Процесс синтеза включает в себя Зэ последовательных реакций и может быть разбит на 4-5 этапов

1 этап - образование из ацетилКоА мевалоновой кислоты

2 этап - -образование из меваяоновой кислоты активированных 5 углеродных группировок, гаопреноидные

группировки (это изопентилпирофосфат, диметилаланиллипофосфат - активные изопеноидные группировки)

3 этап - конденсация изопреноидных группировок с образованием сквапена

4 этап - циклизация сквапена в ланоетерин

5 этап - преобразование ланостерина в холнстерол

В ходе 1-й реакции которую катализирует ацетилКоА-адетилтрансфераза образуется ацетоацетилКоА Затем используется еще одна молекула ацетилКоА и в итоге образуется б-ти углеродная молекула (Зметилр-гидроксиглутарилКоА, фермент - р-гндрокир метлглюторилКоА-синтаза (ГМГ-синтетаза) Следующая реакция наиболее важная реакция этого синтеза, на которую направлены сегодня все ингибиторы синтеза холистерола (фермент является ключевым ферментом синтеза холистерола-ГМГ-редуктаза) Происходит восстановление до спиртовой группы и образуется соединение которое носит название мевалоновая кислота (монокарбоновая)

На втором этапе мевалоновая кислота в результате ряда последовательных превращений преобраз>ется в изопреноидные группировки.

на 3 этапе из активных изопреноидных единиц путем последовательных реакций конденсаций образ> ется сквален, имеющий в своем составе 30 атомов углерода (т е используется по крайней мере 6 изопреноидных группировок)

На 4 этапе идет циклизация сквалена в соединение стероидной природы - ланоетерин, имеющий в своем составе, так же 30 углеродных атомов.

Следует отметить, что некоторые промежуточные продукты этого синтеза используются для синтеза других соединений, в частности коэнзимаО (источник энергии д/ja переноса электронов и протонов т е •это компонент главной дыхательной цепи митохондрий) дошхомЬос&ат (принимает участие в синтезе гетероо'шгосахаридных компонентов в составе гликопротеидов) Ключевая рюль в регуляции синтеза холистерола в клетках принадлежит ферменту ГМГ-КоАредуктазе

При повышении содержания хояистерола в клетках, В независимости от того синтезирован он здесь в клетках или поступил из вне происходит снижение активности этого фермента, причем установлено что в данном случае речь идет не о прямом влиянии холистерола на активность фермента, а в основе ингибирующего действия лежат другие механизмы.

70. Жирные кислоты. превращение их в тканях.

Высшие жирные кислоты могут окислятся в тканях тремя способами 1) а-окисление 2) р-окисление 3) w-окисление Процессы а- и w-окисления идут в мшсросомах с участием ферментов монооксигеназ. Они играют в основном пластическую функцию В ходе этих процессов вдет синтез гидроксикислот, кетокислот и кислот с нечетным количеством углеродных атомов, которые затем включаются в тригшщериды

Первая реакция монооксигеназная, т е реакция гидроксилирования с образованием гидроксикислот и образование жирных кислот с нечетным числом атомов путем декарбоксипирования

Э-окисление высших жирных кислот является основным способом окисления высших жирных кислот в тканях Было открыто в 1924 году

_р-окнсление - процесс многоступенчатого окислительного расщепления высших жирных кислот в ходе которого происходит последовательное отщепление 2 углеродных фрагментов в виде ацетил-КоА со стороны карбоксильной группы активированной высшей жирной кислоты

Активация Поступающие в клетку высшие жирные кислоты подвергаются активации с участием фермента ацилКоА-синтетазы и они превращаются ацилКоА, причем активация происходит в цитозоле в то время как сам процесс р-окисления идет в матриксе митохондрий В то же время мембрана митохондрий непроницаема для ацилКоА Механизм транспорта? Оказывается ацильные остатки переносятся через внутреннюю мембрану митохондрий с помощью специального переносчика - карнитин

В цитозоле с помощью фермента так называемой внешней ацилКоА-карнитинацилтрансферазы переносится остаток высшей жирной кислоты в КоА на карнитин

Далее аципкарнитин при участии специальной транслокаэной системы проходит через мембрану внутрь митохондрий и в матрнксе с помощью внутренней аципКоА-карнитикациятрансферазы остаток ацила переносится на КоА т е образуется в митохондриях ацилКоА, карнитин высвобождается

Высвобожденный карнитин с помощью той же транслоказы переносится в цитозоль, где может включаться в новый цикл переноса Таким образом транслоказа, осуществляющая перенос молекулы ацитилхарнитина внутрь мембраны, обменивает на молекулу карнитина удаляемую из митохондрий.

Далее активированная жирная кислота или ацилКоА подвергается ступенчатому циклическому окислению В результате одного цикла р-окисления радикал жирной кислоты укорачивается на 2 углеродных атома, а отщепившийся фрагмент выделяется в виде ацетилКоА Суммарное уравнение

Ацетил-КоА + ФАД + Н2О + НКоА -> О--СН2(СН2)n-1-С - SКоА + ФАДН2 + НАДН + Н.

Парциальные реакции одного цикла (3-окисления в ходе которого активированная жирная кислота укорачивается на 2 углеродных атома (например вступала стеариновая кислота, выходит пальметаилКоА и отщепляется ацетилКоА)

Пеовая реакция катализируется ФАЛ зависимой аиилКоАдегшнюгиназой. т е это типичная оеакиия окисления путем дегидрирования В итоге образующиеся соединение носит название енонлКоА (дегидроацилКоА) Окислятся он не может без предварительного присоединения воды

Следующая реакция - это реакция гидротации причем вода присоединяется по месту разрыва двойной связи, катализирует эту реакцию еноилКоАгидротаза Образующееся соединение носит название р-оксиацидКоА

р-оксиацилКоА вновь подвергается окислению (НАД зависимая дегидрогииаза) Энергия окисления переходит в НАДН+Н* Образующиеся соединение носит название р-кетоацилКоА (в |3 положении кето группа)

Далее следует тиалазная реакция (тиолиз - расщепление с присоединением серы, обычно это разрушение с участием КоА) Происходит связи в итоге образуется укороченный КоА на 2 углеродных атома и ацетилКоА (2-х углеродный активный ацетат) Особенности окисления жирных кислот с енчетным количеством углеродных атомов и непредельных жирных кислот.

Окислительный распад жирных кислот с нечетным числом атомов

углерода так же идет путем р-окисления, но на заключительном этапе распада образуется 3-х углеродный пропионилКоА (производные пропановой кислоты) Он не может дальше окисляться путем р-окисления, необходимо соединение с минимум 4-мя атомами углерода Он не может окисляться в цикле Кребса поскольку в цикл поступают 2-ч углеродные остатки ацетила Оказывается в клетках существует специальный путь окисления пропионилКоА в ходе которого и происходит его окисление Первоначально происходит реакция харбоксилирования пропионилКоА Эта реакция катализируется ферментом пропионилКоА-карбоксилазой содержащей биотин (vit H) В итоге образуется соединение которое носят название - метяпмапонклКоА Далее следует мутазная реакция е ходе которой метилмалонат (фермент - метилмалошшмутаза) превращается в янтарную кислоту Далее в цикл Кребса Причем выяснилось что в состав метилмалонилмутазы входит vit В12, поэтому при недостатке или отсутствии этого витамина с мочой начинается выделятся пропиокат и металмалонат Определение этих соединений представляет собой ценный тест для диагностики В12 дефицитных состояний

к карбоксильному концу жирной кислоты и в результате нескольких циклов р-окисления образуется еноилКоА но он

а) двойная связь находите* межау Зи4 атомами углерода б) эта связь имеет цис конфигурацию Однако в клетках есть фермент из класса юомераз который переводит двойную связь из положения 3-4 в положение 2-3 и изменяет цис конфигурацию на транс конфигурацию За счет действия этой дополнительной изомеразы стериохимические затруднения, возникающие, преодолеваются.