
- •31. Гормоны, общая характеристика, химическая природа. Механизм действия.
- •32. Гормоны стероидной природы. Механизм действия.
- •32.Адреналин.
- •33.Иодированные тиронины
- •39. Половые гормоны.
- •40. Паратгормон.
- •41. Биологическое окисление.
- •32. Общая схема катаболизма питательных веществ.
- •43.Циклкребса
- •44. Современные представления о тканевом дыхании.
- •45. Главная цепь дыхательных ферментов
- •46 Химическая природа дегидрогеназ. Над Зависимые аегидрогеназы
- •46. Гликозамнногликаны.
- •48 Цитохромы.
- •55. Гннтез и расщеп.Тение гликоееиа
- •56 Аэробный метаболизм углеводов
- •59. Окислительное декарбоксилирование пирувата.
- •60. Патология углеводного обмена.
- •60. Патология углеводного обмена.
- •62. Классификация липидов.
- •64. Триацилглицериды. Жирные кислоты.
- •65. Стериды и стерины
- •69. Обмен холестерола.
- •72 Ацетил КоА
- •74. Синтез рнк.
- •74 Транспорты»формы лнпядов
- •75. Переваривание белков в желудочно-кишечном тракте.
- •76 Дезаминирование, трансаминирование
- •77. Биогенные амины.
- •78. Переаминирование аминокислот.
- •80. Судьба безазотистого остатка аминокислот.
- •82.Синтез мочевины.
- •83. Глутамин и аспарагин. Механизм беопасного транспорта аммиака.
- •84. Биосинтез белков.
- •85.Биосинтез пуриновых и пиримидиновых.
- •86 Мочевая кислота.
- •87. Нуклеопротеиды, нуклеиновые кислоты Структура я биологическая роль нуклеиновых кислот.
- •88. Первшчпая структура рнк.
- •89. Генетический код
- •90. Роль тРнк
- •91. Особенности структуры матричной рнк.
- •92. Репликация днк.
- •94. Химический состав слюны.
- •95. Слюна как биологическая жидкость.
- •96. Особенности химического состава эмали зуба.
- •97. Ферменты слюны.
- •98. Кристаллы апатитов.
- •100. Химический состав эмали зуба.
- •101. Химический состав дентин.
- •102. Химический состав и рольПульПы
- •103. Теории минерализации.
- •104. Химический состав кости
- •105. Влияние витаминов на полость рта.
- •106. Содержание остаточного азота.
- •107. Витамин с, влияние на обмен тканей полости рта.
- •108. Гормоны влияющее на обмен минерализованных тканей.
- •109. Влияние питания на состояние зубов.
- •110. Микроэлементы.
- •111. Сахарные кривые.
- •108. Патологические составные части мочи.
- •115. Содержание мочевой кислоты
- •116. Содержание билирубина в крови.
- •117. Кальций сыворотки.
- •119. Общая кислотность.
- •120. Диагностическое згиачеине определения активности аминотрансферазы.
- •123. Кетоновые тела (диагностическое значение).
- •124. Диагностическое определение белка и активности амилазы.
87. Нуклеопротеиды, нуклеиновые кислоты Структура я биологическая роль нуклеиновых кислот.
Нуклеиновые кислоты - биополимеры мономерными единицами которых являются
В клетках присутствуют 2 типа нуклеиновых кислот: ДНК и РНК. Как правило в составе клеток нуклеиновые кислоты образуют комплексы с белками получившими название - нуклеопротеиды. Химическая структура ДНК.
Молекулы ДНК построены из 2 дёзоксирибополинуклеотидных цепей. Это самые большие
отдельных мономерных звеньев до 500 млн. Общая длина ДНК входящих в диплоидный набор
человека оценивается величиной порядка 1,5 - 2 метра. Вместе с тем химическая
структура отдельной ДНК удивительна проста. Это линейный полимер построенный из достаточно ограниченного числа индивидуальных мономерных единиц. Закономерности в построении.
1 Пентоза входит в состав нуклеотидов в состав нуклеотидов в виде В,D,-фуразной
формы 2. Азотистое основание входит в состав нуклеотидов в лактамной форме.
3. Пентоза своим первым углеродным атомом связана с первым гетероатомом азота
пиримидинового основания или с 9-ым пуринового основания В,n-гликозидной
связью 4. Пентоза 5-ым углеродным атомом связана с фосфорильным остатком
сложноэфирной
связью. Первичная структура ДНК. Последовательность дезоксирибонуклеотидов в полинуклеотидной цепи получили название - первичная структура ДНК. Перечисление дезоксирибонуклеотидных остатков в цепи ДНК начинают с ее 5'- конца. Именно в
информация. Вторичная структура. Представляет собой двойную правозакрученную дезоксирибополинуклеотидных цепей. Саму спиральную структуру образует сахарофосфатные
Стабилизация такой структуры осуществляется прежде всего за счет водородных связей между комплементарными ларами азотистых оснований соседних цепей, во-вторых за счет так называемого стекинг взаимодействия, т.е. взаимодействия
делокализованных систем электронов в расположеных параллельно друг другу
ароматических циклов. Третичная структура ДНК. Молекулы ДНК уменьшается в ядре клетки, диаметр которой измеряется микрометрами. Следовательно спирализованная молекула ДНК должна быть упакована в пространстве причем линейные размеры должны быть уменьшены по крайне мере на 4 порядка. Вместе с тем ДНК - непрочная структура и она легко разламывается на части при ее перегибе. Отсюда ясно, что укладка ДНК в более компактную структуру возможна при взаимодействии ее с другими компонентами ядра (в
основном с ядерными белками (кистоны)). Взаимодействие происходит так же с кислыми
негистоновьми белками, которые входят в состав ядра. Принято выделят 3 уровня компактизации молекулы ДНК. В формировании 1-го - нуклеосомного важную роль играет взаимодействие ДНК с молекулами белков гистонов. Участки ДНК соединяющий между собой минимальные нуклеосомы получили название - линкер. Минимальная нуклеосома с линкером образует полную нуклеосому. За счет нуклеосомного уровня компактизации линейные размеры моелкулы ДНК уменьшаются примерно в 6-7 раз.
Второй уровень компактизации ДНК - образование фибрилл ДНК. Важную роль в формировании второго уровня компактизации принадлежит белку гистону HI.
Своей глобулярной частью молекула гистона связывается со средней частью одной нуклеосомой, а с помощью своих ручек взаимодействует с 2-мя соседними нуклеосомами, при этом нуклеосомы стягиваются вместе, образуя регулярную повторяющуюся структуру напоминающую спираль. Поперечник такой структуры составляет около 30 нм. За счет формирования такого рода фибрилярныя структур длина молекулы ДНК уменьшается еще в
6-7 раз. Дальнейшее уменьшение линейных размеров ДНК идет за счет 3-го петельного
уровня компактизации. Эта структура образуется следующим образом: фибриллы ДНК образуют петлеобразную структуру, которые крепятся к осевой линии хромосомы делящейся клетки. Осевая нить хромосомы образована негистоновыми кислыми белками. Каждая петля включает до 100 тыс пар нуклеотидов. Существуют более высокие уровни компактизации
молекуды ДНК. В клетках в пределах одной и той же хромосомы имеется
высококонденсированный гетерохроматин и менее конденсированный эухроматин.
Информация записана в ДНК о линейной последовательности аминокислотных остатков полипептидных цепей белков и некоторых полипепюцдов. Эта информация о линейной последовательности рибонуклеотидных остатков в молекулах структурных РНК, т. е. транспортных и рибосомальных.