
- •31. Гормоны, общая характеристика, химическая природа. Механизм действия.
- •32. Гормоны стероидной природы. Механизм действия.
- •32.Адреналин.
- •33.Иодированные тиронины
- •39. Половые гормоны.
- •40. Паратгормон.
- •41. Биологическое окисление.
- •32. Общая схема катаболизма питательных веществ.
- •43.Циклкребса
- •44. Современные представления о тканевом дыхании.
- •45. Главная цепь дыхательных ферментов
- •46 Химическая природа дегидрогеназ. Над Зависимые аегидрогеназы
- •46. Гликозамнногликаны.
- •48 Цитохромы.
- •55. Гннтез и расщеп.Тение гликоееиа
- •56 Аэробный метаболизм углеводов
- •59. Окислительное декарбоксилирование пирувата.
- •60. Патология углеводного обмена.
- •60. Патология углеводного обмена.
- •62. Классификация липидов.
- •64. Триацилглицериды. Жирные кислоты.
- •65. Стериды и стерины
- •69. Обмен холестерола.
- •72 Ацетил КоА
- •74. Синтез рнк.
- •74 Транспорты»формы лнпядов
- •75. Переваривание белков в желудочно-кишечном тракте.
- •76 Дезаминирование, трансаминирование
- •77. Биогенные амины.
- •78. Переаминирование аминокислот.
- •80. Судьба безазотистого остатка аминокислот.
- •82.Синтез мочевины.
- •83. Глутамин и аспарагин. Механизм беопасного транспорта аммиака.
- •84. Биосинтез белков.
- •85.Биосинтез пуриновых и пиримидиновых.
- •86 Мочевая кислота.
- •87. Нуклеопротеиды, нуклеиновые кислоты Структура я биологическая роль нуклеиновых кислот.
- •88. Первшчпая структура рнк.
- •89. Генетический код
- •90. Роль тРнк
- •91. Особенности структуры матричной рнк.
- •92. Репликация днк.
- •94. Химический состав слюны.
- •95. Слюна как биологическая жидкость.
- •96. Особенности химического состава эмали зуба.
- •97. Ферменты слюны.
- •98. Кристаллы апатитов.
- •100. Химический состав эмали зуба.
- •101. Химический состав дентин.
- •102. Химический состав и рольПульПы
- •103. Теории минерализации.
- •104. Химический состав кости
- •105. Влияние витаминов на полость рта.
- •106. Содержание остаточного азота.
- •107. Витамин с, влияние на обмен тканей полости рта.
- •108. Гормоны влияющее на обмен минерализованных тканей.
- •109. Влияние питания на состояние зубов.
- •110. Микроэлементы.
- •111. Сахарные кривые.
- •108. Патологические составные части мочи.
- •115. Содержание мочевой кислоты
- •116. Содержание билирубина в крови.
- •117. Кальций сыворотки.
- •119. Общая кислотность.
- •120. Диагностическое згиачеине определения активности аминотрансферазы.
- •123. Кетоновые тела (диагностическое значение).
- •124. Диагностическое определение белка и активности амилазы.
75. Переваривание белков в желудочно-кишечном тракте.
Переваривание белков представляет собой расщепление пищевых белков на составляющие его аминокислоты Расщепление белков в желудочно-кишечном тракте .идет при участи фериетов протеиназ кащионруютдих
гидролитическое расщепление юс гвптидных связей Все протеиназы к-к тракта могут быть разделены на 2 грут0ш.
В данном случае эффективность катализа неизмеримо меньше Специфичность действия протеиназ выглядит
следующим образом.
Пепсин катализ разрыва летпидных связей образованных аминогруппами фенилаланина и тирозина (ароматические
аминокислоты)
Трипсин - катализ разрыва пептндкых связей образованных карбоксильными группами лизина и аргинина (основные
аминокислоты)
Хемотрипсин - кмалнз разрыва пептидных связей образованных карбоксильными группами трех аминокислот
ароматических фениалаланнана, тирозина и триптофана
Карбоксипептидаза А ———— образованных С концевыми аминокислотами фенилаланнна, тирозина и триптофана
Карбоксипептидаза ————образованиях С концевыми лизином и аргинином.
Аланинаминопептидаза - - — образованных N концевым аланином В целом протеяшш ж-к тракта в отношении своей специфичности обладают дополнительностью действия т е за
счет совокупности их (згаяитического эффекта с большой скоростью идет гидролиз пеПгияиых связей к белковых
молекулах. Более того отсутствие одной из протеннвз за исключением трипсина обычно не приводит к существенному
нарушению переваривания белков.
Переваривание белков в желудке.
Переваривание белков начинается в желудке
В желудочном соке присутствует несколько протеиназ пепсин, гастриксин и несколько сходных с пепсином протеиназ Одним из таких ферментов является пепсин В У детей юиетея еще одна эндопротеиназа ренин
Главной протеиназой желудочного свка пуослих несомненно является пепсин. Клетки слизистой дна Желудка вырабатывают профермент пепсияоген. Его молекулярная масса составляет величину килодальтон Под действием соляной кислоты желудочного сока пепсиноген в результате ограниченного протно виа превращается в пепсин молекуляр масса кот равна 32,7 килодальтон.
Оптимальной средой для действия пепсина является среда с рН 1- 2,5 Это значение создается в желудке соляной кислотой. Белки под действием пепсина расщепляются в желудке с образованием смеси пептидов различной длины с очень небольшой примесью свободных аминокислот, причем пепсин обеспечивает 95 % всей переваривающей способности желудочного сока Например действие гасгрикшиа ограничено поскольку оптимум рН для этого фермента составляет величину порядка 5
Важным компонентом желудочного сока является несомненно соляная кислота, которая кроме участия в переводе пепсиногена в пепсин создает оптимум рН для действия пепсина Это так называемое значение соляной кислоты 1
перевод пепсиногена в пепсин 2, создание оптимума рН для пепсина 3. денатурирует белки 4. бактерицидное действие.
Переваривание белков в кишечнике.
Смесь полипептидов из желудка в 12перстнук> кишку где под действием протеиназ поджелудочного и кишечного сока продолжается расщепление белков и пеетидов до отдельных аминокислот. рН составляет от 7,5-8,2 это слабощелочное значение рН поддерживается за счет бикарбонатов поступающих в кишечник с соком поджелудочной железы.
В поджелудочной железе синтезируется протоэнзимы. трипсиноген, хемотрнпсиноген, прокарбоксипептидазы А и В, проэластаза проколлагеназа
С соком поджелудочной железы эти проферменты поступают в просвет кищечнкка и в результате избирательного ограниченного протиолиза превращаются в активные ферменты
Важнейшую роль в превращении проферментов в ферменты принадлежит 2-м протеиназам 1 Энтерокиназа кишечной стенки 2 Трипсин
Как они работают?
Энтерокиназа отщепляет от неактивного трипсиногена гексопептид (6 амк остатка ). превращая профермент в активный трипсин. В дальнейшем превращение трипсиногена в трипсин может идти параллельно, путем аутокатализа. Образовавшийся трипсин превращает все другие проферменты в активные Ферменты, Хемотрипсиноген А или В под действием трипсина превращается в одну из форм активного
Действие протеиназ поджелудочной железы дополняется действием ферментов синтезируемых в стенках кишечника Кишечная стенка синтезирует про аминопептидазу и про-дипептидазу. Перевод в активную форму идет так же за счет трипсина.
Механизм перевода единый отщепление различной длины путем ограниченного протиолиза и формиРование активного центра Под действием этого комплекса ферментов белки и пептиды расщепляются до отдельных аминокислот и в таком
виде всасываются в стенку кишечника. Всасывание ди-, три-, тетрапептидов абсолютно невозможно.