Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы клинической гнатологии (биомеханика зубочелюстно-лицевой системы) Хватова.doc
Скачиваний:
1581
Добавлен:
20.03.2015
Размер:
5.49 Mб
Скачать

12 10 8

2 4

б

8

ю

12

Z

Рис. 3.53. Сагиттальные аксиограммы переднего (1) и медиотрузионного (2) дви­жений суставных головок. Справа (а) траектории движений отходят друг от друга на 2 мм, что указывает на возможную патологию ВНЧС; слева (б) — расположе­ние траекторий в норме [Mack H.].

111

HORIZONTAL

-2

мм б

-2 мм а

Рис. 3.54. Горизонтальные аксиограммы. Траектории движений суставных головок балансирующих сторон.

Справа (а) — незначительное начальное боковое смещение (iss) в виде небольшого искривле­ния траектории (обозначено стрелкой); слева (б) iss отсутствует — прямая линия (Н. Mack).

на 45°. Это искривление далее пе­реходит в прямую линию, которая с сагиттальной плоскостью составля­ет угол 7—10°. Такая траектория ре­гистрируется у пациентов, которые имеют движение Беннетта. Если оно отсутствует, траектория пред­ставляет собой прямую линию с уг­лом 7—10° вперед и внутрь.

Траектории движений суставных головок балансирующих сторон во фронтальной плоскости, получен-

ные с помощью электронных при­боров, показаны на рис. 3.55. Ме-диотрузионное движение имеет вид кривой, направленной внутрь и вниз, которая переходит почти в прямую линию, что характерно для движения Беннетта.

Использование параокклюзионных ложек позволяет:

мм

Frontal

2

  • увеличить угол ротации при определении места расположенияшарнирной оси, в основном при глубоком резцовом перекрытии;

  • произвести аксиографию при нормальной функции и парафункции;

  • проконтролировать правиль­ ность определения центрального со­ отношения челюстей;

  • изучить механизм возникнове­ ния щелчков в ВНЧС в начале от­ крывания рта.

- 10

Рис. 3.55. Фронтальные аксиограммы. Траектории движения суставных голо­вок балансирующих сторон.

а — справа — изгиб в конце движения, сус­тавная головкая поднимается после дости­жения самой низкой точки (при гипермо­бильности суставной головки); б — слева.

112

При смыкании челюстей необхо­димо определить степень резцового перекрытия, место для фиксации ложки и сделать защитную плас­тинку для верхней челюсти. Плас­тинку воска размягчить, адаптиро­вать на зубы модели верхней челю­сти, затем ввести пластинку в по­лость рта и просить пациента наку-сить размягченный воск. Получен­ную пластинку вывести из полости рта, обрезать ее края, чтобы они были на 5 мм шире зубного ряда.

По сторонам от срединной линии внутренней поверхности ложки укрепить восковые валики, чтобы после записи легче было удалить ложку.

Рис. 3.56. Припасовка и фиксация параокклюзионной ложки [Bumann A., Lotz-mann U., 2000].

а — прилегание ложки к зубам модели нижней челюсти уточнено самотвердеющей пласт­массой; б — ложка фиксирована к зубам цементом («Harvard», «Durelon»).

Параокклюзионную ложку с ослабленными боковыми подвиж­ными захватами наложить на мо­дель нижней челюсти. Срединный стержень ложки должен проходить по срединно-сагиттальной линии челюсти.

Левый, а затем правый захваты припасовывают к вестибулярной поверхности зубов, фиксируют шестигранным ключом, пластмас­сой уточняют прилегание его к зу­бам, чтобы не травмировать десну.

Пациент плотно смыкает зубы, ложку смещают вверх, чтобы она по возможности больше отходила от десневого края. Удаляют излиш­ки пластмассы, мешающие плотно­му смыканию зубов. Ослабив вин­ты, выводят ложку изо рта, еще раз контролируют края пластмассы по модели.

Ватными роликами изолируют зубы (2 ролика под язык и 2 — с щечной стороны). Зубы обрабаты­вают спиртом. Ложку фиксируют цементом («Дурелон»: 9 капель жидкости + 3 мерные ложки по­рошка). Затем зубы высушивают, устанавливают на них ложку, пред-

варительно закрыв верхние зубы подготовленной пластинкой воска. Зубы сомкнуты, оба винта фикси­рованы. До затвердения цемента пациента просят не двигать челю­стью. После этого еще раз проверя­ют, не мешает ли ложка смыканию зубов. Коррекцию проводят шаро­видным бором. Параокклюзионную ложку припасовывают на модели нижней челюсти самотвердеющей пластмассой, чтобы при смыкании челюстей не было препятствий, а затем укрепляют в полости рта це­ментом (рис. 3.56, а,б). Параокклю-зионная аксиография позволяет установить правильность централь­ного соотношения. Центральное соотношение фиксируют передним жестким блоком и твердым силико­ном (на боковых зубах). Затем уста­навливают аксиограф с параокклю­зионной ложкой, определяют шар­нирную ось. Передний жесткий блок устанавливают вместе с пара­окклюзионной ложкой и снова определяют расположение шарнир­ной оси. Если локализация послед­ней не изменяется, центральное со­отношение определено правильно.

113

3.4.3. Электромиография

Электромиография (ЭМГ) — объек­тивный метод исследования нейро-мышечной системы путем регист­рации электрических потенциалов жевательных мышц, позволяющий оценить функциональное состоя­ние зубочелюстной системы.

Различают три основных метода ЭМГ:

  1. интерференционный (поверх­ ностный, суммарный, глобальный), при котором электроды накладыва­ ют на кожу;

  2. локальный, при котором ис­ следование проводят с применени­ ем игольчатых электродов;

  3. стимуляционный, при котором проводят измерение скорости рас­ пространения электрического им­ пульса от места его нанесения до другого участка стимулируемого нерва или иннервируемой им мыш­ цы.

Для суждения о состоянии жева­тельных мышц достаточно проведе­ние интерференционной ЭМГ с по­мощью поверхностных электродов.

Методика ЭМГ-исследования. ЭМГ-исследованиям жевательных мышц при стоматологических забо­леваниях посвящено много работ [Персии Л.С, Хватова В.А., Ерохи-на И.Г., 1982; Петросов Ю.А., 1982; Хватова В.А., 1985; Малевич О.Е., Житний Н.И., 1991; Гречко В.Е. и др., 1994; Онопа Е.Н. и др., 2003; Bessette R. et al., 1971; Freesmey-erW., 1993].

Электрическую активность жева­тельных мышц регистрируют одно­временно с двух сторон. Для отве­дения биопотенциалов используют поверхностные чашечковые элект­роды. Электроды фиксируют в об­ласти моторных точек (участки наибольшего напряжения мышц, которые определяют пальпаторно).

Для записи ЭМГ применяют функциональные пробы. Регистри­руют ЭМГ в физиологическом по­кое нижней челюсти, при сжатии

114

челюстей в привычной окклюзии, произвольном и заданном жевании (рис. 3.57).

Кроме того, изучают мандибу-лярный рефлекс (при постукивании неврологическим молоточком по подбородку по средней линии) при сжатии челюстей в положении цен­тральной окклюзии. Мандибуляр-ный рефлекс — время рефлектор­ного торможения активности жева­тельных мышц, имеет диагностиче­ское значение (рис. 3.58).

При анализе ЭМГ определяют следующие показатели: среднюю амплитуду биопотенциалов, коли­чество жевательных движений в од­ном жевательном цикле, продолжи­тельность одного жевательного цикла, время биоэлектрической ак­тивности (БЭА) и биоэлектриче­ского покоя (БЭП) жевательной мускулатуры в фазе одного жевате­льного движения. Полученные дан­ные сравнивают с показателями нормальной ЭМГ-активности жева­тельной мускулатуры.

При электромиографии наруж­ных крыловидных мышц использу­ют концентрические игольчатые электроды. Каждый электрод — тонкая полая игла диаметром 0,45 мм, в которую введена прово­лока, изолированная от внешней оболочки на всем протяжении за исключением кончика. Перед вве­дением игольчатые электроды вы­держивают 30 мин в специальном стерилизаторе.

В литературе описаны два спосо­ба введения электродов — внутри-ротовой и внеротовой. Внутрирото-вой метод технически трудно вы­полнить, он не точен и не дает воз­можность изучить активность мышц во время жевания. Внерото­вой метод введения игольчатых электродов через полулунную вы­резку нижней челюсти не позволяет осуществить запись ЭМГ во время функции жевания, так как игольча­тый электрод проходит через сухо­жилие жевательной мышцы.

б -

Рис. 3.57. ЭМГ-активность жевательных (1), височных (2), латеральных крыло­видных (3) и надподъязычных мышц (4) при сжатии челюстей (А) и заданном же­вании (Б) в норме.

а — справа, б — слева.

Разработан метод введения иголь­чатого электрода непосредственно в мышцу вблизи шейки суставного отростка нижней челюсти (В.А.Хва-това, А.А.Никитин А.А. и др.1)-

После обработки кожи лица спиртом электрод вводят в мягкие ткани шейки суставного отростка нижней челюсти, слегка оттягивают на себя, чтобы его рабочая часть находилась в мышце. Такое поло­жение электрода позволяет свобод­но и безболезненно производить все движения челюсти (рис. 3.59). Осложнение в виде кратковремен-

1 Авторское свидетельство № 1250246 от 13.06.84 г.

ного ограничения открывания рта наблюдали редко.

В норме отмечаются согласован­ная функция мышц-синергистов и антагонистов, четкая ритмическая смена фаз БЭА и БЭП. В фазе одно­го жевательного движения время ЭМГ-активности жевательных, ви­сочных и наружных крыловидных мышц меньше, а надподъязычных мышц равно времени ЭМГ «покоя».

В периоде покоя отсутствует спонтанная активность мышц. Средняя амплитуда ЭМГ всех ис­следуемых мышц при сжатии челю­стей меньше, чем при жевании. При произвольном жевании проис­ходит периодическая смена функ­ционального центра, наблюдается

115

300 мкВ

0,075 с

Рис. 3.58. Время рефлекторного тормо­жения активности правой (а) и левой (б) жевательных мышц в норме.

го рефлекса увеличивается более чем в 2 раза.

В фазе одного жевательного дви­жения время БЭП уменьшается, а время БЭА увеличивается.

ЭМГ-активность мышц-подни-мателей при мышечно-суставной дисфункции уменьшается, а мышц дна полости рта увеличивается [Хватова В.А., 1986].

Степень нарушений ЭМГ-актив-ности мышц соответствует степени выраженности болевого синдрома. У больных с полным регрессом клинических проявлений дисфунк­ции после лечения параметры ЭМГ-исследования и латентное время подбородочного рефлекса приближаются к норме. В то же время в группе лиц с остаточными явлениями заболевания в конце курса лечения сохраняются измене-

перемежающая активность мышц справа и слева. При этом жеватель­ные и наружные крыловидные мышцы более отчетливо реагируют на смену функционального центра, чем височные и надподъязычные мышцы. При заданном жевании на рабочей стороне повышается сред­няя амплитуда ЭМГ жевательной, височной и надподъязычной мышц, а на противоположной — наружной крыловидной мышцы.

Жевательные и височные мышцы при жевании проявляют синхрон­ную активность, а залпы ЭМГ-ак-тивности наружных крыловидных и надподъязычных мышц располага­ются между залпами активности жевательных и височных мышц.

В норме при физиологическом покое жевательных мышц ЭМГ-ак-тивность отсутствует, в то время как при мышечно-суставной дис­функции такая активность доходит до 170 мкВ, а при явлениях брук-сизма могут наблюдаться и более высокие амплитуды. Длительность латентного периода мандибулярно-

116

Рис. 3.59. Момент записи ЭМГ наруж­ных крыловидных мышц. Игольчатые электроды введены непосредственно в мышцу вблизи шейки суставного отро­стка (собственная методика).

ния ЭМГ-картины: снижение БЭА мышц и увеличение латентного времени проведения рефлекса [Се­менов И.Ю., 1997].

J.Travell, D.Simons (1989) обнару­жили при болевом синдроме дис­функции ВНЧС триггерные точки (ТТ) в жевательных мышцах — уча­стки повышенной раздражимости мышечной ткани, болезненной при сдавливании, из которых иррадиа­ция боли происходит в определен­ные зоны.

Для всех ТТ характерны общие признаки:

  • гиперраздражимость;

  • усиленный метаболизм;

  • сниженный кровоток;

  • наличие пальпируемого тяжа.

Исследования показали, что по­ражение мышц наблюдается при нарушении окклюзии (35 %), брук-сизме (24 %), эмоциональном на­пряжении (15 %), отсутствии зубов (20 %) и другой патологии зубоче-люстной системы (6 %).

Причины, по которым наруше­ние окклюзии у одних людей при­водит к формированию ТТ в жева­тельных мышцах, а у других нет, до настоящего времени неясны.

Экспериментальные исследова­ния с вызванными окклюзионными нарушениями показали, что только у одного исследуемого из пяти с ис­кусственно созданной окклюзион-ной дисгармонией к концу второй недели эксперимента появился мы­шечный дискомфорт. Вероятно, ок-клюзионные нарушения могут под­держивать ТТ в жевательных мыш­цах, но не формировать и активи­ровать их.

Формированию ТТ в мышцах, по данным биохимических исследова­ний, способствует нарушение мета­болизма гормонов, минеральных веществ, витаминов при общих за­болеваниях (печени, щитовидной железы, желудочно-кишечных рас­стройствах).

Интерпретация полученных

ЭМГ-данных возможна при комп-

лексном исследовании зубочелюст-ной системы, так как одни и те же изменения ЭМГ-картины бывают при различных патологических со­стояниях (потеря зубов, аномалии прикуса, снижение окклюзионной высоты).

3.4.4. Реоартрография

В патогенезе функциональных на­рушений зубочелюстной системы важную роль играют изменения ге­модинамики околоушно-суставной области.

В стоматологии для изучения микроциркуляции различных тка­ней используют реографию, лазер­ную допплеровскую флюоромет-рию, биомикроскопию.

Разработанная тетраполярная ме­тодика реоартрографии ВНЧС пред­полагает использование реоплетиз-мографа РПГ-2-02 и многоканаль­ного самописца «Мингограф-34» [Хватова В.А. и др., 1986].

Тетраполярный способ реогра-фии по сравнению с биполярным позволяет регистрировать пульсо­вые колебания сосудов строго опре­деленной области, увеличивает глу­бинность исследования.

Параллельно с реограммой запи­сывают дифференциальную рео-грамму и ЭКГ во II стандартном отведении.

Держатель электродов для рео-графии ВНЧС состоит из базиса, изготовленного из пластмассы с укрепленными в нем электрически­ми контактами из четырех серебря­ных пластинок размером 5 5 мм, расстояние между которыми 5 мм. Внутренняя поверхность электро­дов сделана вогнутой, что обеспе­чивает максимальный контакт с ко­жей лица в области сустава. Фикса­цию электродов на коже лица осу­ществляют при помощи лейкопла­стыря. В качестве функциональных проб применяют статическую на­грузку зубов в положении цент­ральной окклюзии в течение 30 с, а

117

также динамическую нагрузку — заданное жевание в течение 2 мин жевательной резинки. Динамику показателей реографии изучают до, во время и в различные сроки по­сле нагрузки.

Перед исследованием измеряют брахиальное кровяное давление с обеих сторон и пульс. Исследова­ние проводят при нормальном кро­вяном давлении и пульсе 80—100 в минуту.

Реовазограммы на привычной стороне жевания и на противопо­ложной оценивают качественно и количественно. При количествен­ном анализе реограмм измеряют основную амплитуду реограммы, амплитуды медленного наполнения низшей точки инцизуры и дикроти-ческой волны. На основании этих показателей вычисляют индексы: эластичности сосудов (ИЭ), тонуса сосудов (ИТ), реографический (РИ), дикротический и диастоличе-ский (ДС). Реографический индекс характеризует величину и скорость систолического притока крови в исследуемую область; диастоличе-ский — венозный отток (уменьша­ется при улучшении оттока веноз­ной крови).

Определяют коэффициент асим­метрии реограмм. Меньший пока­затель принимают за 100 %, раз­ность показателей реовазограмм вычисляют в процентах. Учитыва­ют, что в норме коэффициент асимметрии не превышает 25 % [Яруллин Х.Х., 1967].

В контрольной группе при ин-тактных зубных рядах до функцио­нальной нагрузки реограммы имели вид однородных волн с крутым подъемом анакроты, заостренной вершиной, пологой катакротой.

Инцизура и дикротическая волна расположены в средней части ка-такроты. Асимметрия показателей реограмм обоих ВНЧС не превы­шает 10 % (рис. 3.60).

При сжатии челюстей происходит симметричное уменьшение реогра-

118

фического индекса и индекса элас­тичности сосудов, повышаются ин­дексы тонуса сосудов и диастоличе-ский. При заданном жевании на ра­бочей стороне в 2—3 раза возрастает основная амплитуда реограмм, а на нерабочей стороне этот показатель снижается в 2— 3 раза.

Рабочая гиперемия после сжатия челюстей в норме происходит через 1 мин после нагрузки, а при пато­логии через 5 мин.

Заданное жевание во всех случа­ях вызывает улучшение кровотока на рабочей стороне и его ухудше­ние на балансирующей стороне.

Однако при патологии ухудше­ние показателей гемодинамики на стороне дефектов зубных рядов продолжается длительно (5 мин, а в норме 1 мин), позднее восстанавли­ваются исходные показатели после нагрузки. Рабочая гиперемия после нагрузки на стороне интактных зуб­ных рядов и ортогнатического при­куса (привычная сторона жевания) наступает раньше, чем на стороне дефектов зубных рядов- и аномалий прикуса.

После коррекции функционало-ной окклюзии реографические по­казатели улучшаются.

3.4.5. Фоноартрография

Суставной шум наблюдается при внутрисуставных нарушениях — ги­пермобильности сустава, дислока­ции суставных головок и дисков, артрозе.

При выслушивании ВНЧС стето­скопом в норме при движениях нижней челюсти определяются не­значительно выраженные звуки трущихся поверхностей. Суставные звуки могут отсутствовать при арт­рите ВНЧС (излишек суставной жидкости). При артрозе ВНЧС сус­тавные звуки связаны с деформа­цией суставных поверхностей.

При фоноартрографии с помо­щью прибора, позволяющего визуа­льно наблюдать звуковые колеба-

Рис. 3.60. Реограммы ВНЧС в норме.

а — до функциональной нагрузки; б — через 10 мин после нагрузки — сжатия челюстей; в — через 20 мин после нагрузки; г — после жевания на правой стороне (через 1 мин после на­грузки).

1 — ЭКГ; 2, 3 — реограммы ВНЧС справа и слева; 4 — дифференцированная реограмма (объяснение в тексте).

ния, прослушивать суставные звуки и записывать их в виде графика, было обнаружено, что амплитуда суставного шума при боковых дви­жениях нижней челюсти значитель­но больше, чем при открывании и закрывании рта. Это характерно как для нормы, так и для патологии ВНЧС.

В норме во время функциональ­ных проб определяются равномер­ные, мягкие, скользящие звуки. При нарушениях функциональ­ной окклюзии амплитуда суставно­го шума повышается в 2—3 раза, при артрозах ВНЧС наблюдаются щелкающие звуки различной выра­женности [Хватова В.А. и др., 1988].