Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2 курс / Нормальная физиология / Общий_курс_физиологии_человека_и_животных_Том_2_Ноздрачев_А_Д_,

.pdf
Скачиваний:
12
Добавлен:
24.03.2024
Размер:
13.67 Mб
Скачать

люминальной мембране локализованы переносчики и ионные каналы для многих веществ, обеспечивающие прохождение последних через мембрану в клетку. В базолатеральных мембранах содержатся Na, К-АТФаза, Са-АТФаза, переносчики некоторых органических веществ. Это создает условия для всасывания органических и неорганических веществ из клетки в межклеточную жидкость, в конечном счете, в сосудистое русло. Наличие в апикальной мембране натриевых каналов, а в базолатеральных мембранах натриевых насосов обеспечивает возможность направленного потока ионов Na из просвета в клетку канальца и из клетки с помощью насоса в межклеточное вещество. Таким образом, клетка функционально является асимметричной, обеспечивая поток веществ из просвета канальца в кровь.

Для такого процесса имеются структурные и биохимические предпосылки. В базальной части клеток почечных канальцев сосредоточены митохондрии, в которых при клеточном дыхании вырабатывается энергия для работы ионных насосов.

Глюкоза. Ежеминутно в канальцы почек у человека поступает 990 ммоль глюкозы, в 1 сут в почках реабсорбируется около 989,8 ммоль, т. е. моча оказывается практически свободной от глюкозы. Следовательно, всасывание глюкозы происходит против концентрационного градиента, в результате из канальцевой жидкости в кровь реабсорбируется вся глюкоза при нормальной ее концентрации в крови.

При повышении содержания глюкозы в плазме крови с 5 до 10 ммоль/л глюкоза появляется в моче. Это обусловлено тем, что в люминальной мембране клеток проксимального канальца находится ограниченное количество переносчиков глюкозы. Когда они полностью насыщаются глюкозой, достигается ее максимальная реабсорбция, а избыток начинает экскретироваться с мочой. Величина максимальной реабсорбции глюкозы имеет важное значение для функциональной оценки реабсорбционной способности клеток проксимальных канальцев (см. рис. 12.7).

Для определения максимальной величины транспорта глюкозы (TmG) достигают полного насыщения системы ее канальцевого транспорта. С этой целью в кровь вводят глюкозу, повышая ее концентрацию в клубочковом фильтрате до тех пор, пока не будет достигнут порог реабсорбции и глюкоза не начнет в значительных количествах выделяться с мочой. Величину TmG рассчитывают по разнице между количеством профильтровавшейся в клубочках глюкозы (равно произведению объема клубочкового фильтрата СIn на концентрацию глюкозы в плазме крови PG) И выделившейся с мочой (UG

— концентрация глюкозы в моче, V — объем выделившейся мочи):

TmG = CInPG — UGV

Величина TmG характеризует полную загрузку системы транспорта глюкозы. У мужчин она равна 2,08 ммоль/мин (375 мг/мин), у женщин — 1,68 ммоль/мин (303 мг/мин) при расчете на 1,73 м поверхности тела.

На примере глюкозы можно рассмотреть мембранные и клеточные механизмы реабсорбции моносахаридов и аминокислот в точечных аминокислот только этой группы. Системы транспорта отдельных групп аминокислот контролируются раздельными генетическими механизмами. Описаны наследственные заболевания, одним из проявлений которых служит увеличенная экскреция определенных групп аминокислот.

Недавно были получены данные, что в почечных канальцах могут реабсорбироваться дипептиды и трипептиды в неизмененном виде. Пептидные гормоны, фильтруемые в почечных клубочках, частично гидролизуются и возвращаются в кровь в виде аминокислот, частично экскретируются с мочой.

Выделение с мочой слабых кислот и оснований зависит от их ультрафильтрации в клубочках, реабсорбции и секреции в проксимальных канальцах, а также от «неионной диффузии», влияние которой особенно сказывается в дистальных канальцах и собирательных трубках. Эти соединения могут существовать в зависимости от рН среды в двух формах: неионизированной и ионизированной. Клеточные мембраны более проницаемы для неионизированных веществ. Многие слабые кислоты с большой

скоростью экскретируются со щелочной мочой, а слабые основания, напротив, с кислой. У оснований степень ионизации увеличивается в кислой среде, но уменьшается в щелочной. В неионизированном состоянии эти вещества растворимы в липидах и проникают в клетки, а затем в плазму крови, т. е. реабсорбируются. Если в канальцевой жидкости значение рН сдвинуто в кислую сторону, основания ионизированы и преимущественно экскретируются с мочой. Так, например, никотин является слабым основанием, ионизированным на 50 % при рН 8,1, он в 3—4 раза быстрее экскретируется с кислой мочой (рН около 5), чем при щелочной реакции (рН 7,8). Неионная диффузия влияет на выделение почкой аммония, ряда лекарственных препаратов.

Электролиты. Всасывание профильтровавшихся в клубочках ионов Na+, Сl- и НСО3- требует наибольших энерготрат в клетках нефрона. У человека в 1 сут реабсорбируются около 24330 ммоль натрия, 19760 ммоль хлора, 4888 ммоль бикарбоната, а выделяется с мочой 90 ммоль натрия, 90 ммоль хлора, менее 2 ммоль бикарбоната. Транспорт натрия является первично-активным, т. е. именно на его перенос расходуется энергия клеточного обмена. Ведущую роль в этом процессе играет Na, К-АТФаза. В цроксимальном канальце у млекопитающих реабсорбируется около 2/3 профильтровавшегося натрия. Обратное всасывание Na+ в этом канальце происходит против небольшого градиента, и его концентрация в канальцевой жидкости остается такой же, как и в плазме крови. В проксимальном канальце реабсорбируются все остальные ионы. Как отмечалось выше, изза высокой проницаемости стенки этого канальца для воды жидкость в просвете нефрона остается изоосмотичной плазме крови.

Ранее считали, что в проксимальном сегменте нефрона происходит обязательная (облигатная) реабсорбция, т. е. при всех условиях всасывание ионов Na+, Сl-, воды является постоянной величиной. Напротив, в дистальных извитых канальцах и собирательных трубках реабсорбция ионов и воды может регулироваться, ее величина меняется в зависимости от функционального состояния организма. Результаты последних исследований указывают на то, что под влиянием импульсов, поступающих по эфферентным нервным волокнам к почке, и при действии физиологически активных веществ (например, одного из натрийуретических гормонов) регулируется реабсорбция натрия и в проксимальном отделе нефрона. Это особенно отчетливо выявляется при увеличении объема внутрисосудистой жидкости, когда уменьшение реабсорбции в проксимальном канальце способствует усилению экскреции ионов и воды, а тем самым восстановлению объема крови.

В результате реабсорбции в проксимальном канальце большинства компонентов ультрафильтрата и воды объем первичной мочи резко уменьшается и в начальный отдел петли Генле у млекопитающих поступает около 1/3 профильтровавшейся в клубочках жидкости. В петле Генле всасывается до 25% натрия, поступившего в нефрон при фильтрации, в дистальном извитом канальце — около 9%; меньше 1% натрия реабсорбируется в собирательных трубках или экскретируется с мочой. В конечных отделах канальцев концентрация натрия может снижаться до 1 ммоль/л по сравнению с 140 ммоль/л в клубочковом фильтрате. В дистальном сегменте нефрона и собирательных трубках в отличие от проксимального сегмента всасывание происходит против высоких концентрационного и электрохимического градиентов.

Клеточные механизмы реабсорбции Na+ , как и других ионов, могут существенно отличаться в разных отделах нефрона (рис. 12.9). В клетках проксимального канальца поступление натрия через лю-минальную мембрану внутрь клетки обеспечивается рядом механизмов. Оно может быть связано с обменом Na+ на протоны (Na+/H+), а также с деятельностью натрийзависимых переносчиков аминокислот и глюкозы. В люминальной мембране клеток толстого восходящего отдела петли Генле поступление иона Na+ в клетку происходит одновременно с ионом К+ и двумя ионами Сl-; эта система блокируется со стороны просвета канальца фуросемидом. В дистальном извитом канальце ведущее значение имеет прохождение иона Na+ по натриевому каналу, специфическим блокатором

которого является амилорид. Во всех случаях поступившие внутрь клетки ионы натрия удаляются из нее Na, К-АТФазой, локализованной в базальной плазматической мембране.

Рис. 12.9. Мембранные механизмы транспорта Na+ в клетках различных отделов нефрона. В базальных мембранах всех типов клеток содержится Na, К-АТФаза, обеспечивающая обмен ионов Na+ на ионы К+. В

люминальной мембране локализована система котранспорта Na+ и глюкозы (G). натриевые каналы, система котранспорта некоторых других ионов; стрелками указаны участки нефрона, где находятся клетки соответствующих типов

Таким образом, молекулярные механизмы реабсорбции ионов натрия не одинаковы в разных участках нефрона. Это определяет отличие скорости реабсорбции и способов регуляции переноса натрия.

Электрофизиологические исследования клеток нефрона подтверждают высказанные выше представления о пассивном и активном компонентах системы реабсорбции натрия. При реабсорбции натрий вначале входит в клетку эпителия канальца пассивно по натриевому каналу мембраны, обращенной в сторону просвета канальца; внутренняя часть клетки заряжена отрицательно, и поэтому положительно заряженный Na+ движется в клетку по градиенту потенциала. Натрий направляется в сторону базальной плазматической мембраны, в которой имеется натриевая помпа, выбрасывающая его в межклеточную жидкость (рис. 12.10).

Рис. 12.10. Транспорт Na+ и К+ клеткой дистального извитого канальца

Регуляция реабсорбции и секреции ионов в почечных канальцах. В регуляции реабсорбции натрия участвуют эфферентные нервные волокна, подходящие к почке, и некоторые гормоны (рис. 12.11). Вазопрессин усиливает всасывание натрия в клетках толстого восходящего отдела петли Генле. Механизм этого эффекта основан на внутриклеточном действии цАМФ. Другим стимулятором реабсорбции натрия является альдостерон, который увеличивает транспорт Na+ в клетках дистальных почечных канальцев. Из внеклеточной жидкости этот гормон проникает через базальную

плазматическую мембрану в цитоплазму клетки и соединяется с рецептором. Возникший комплекс поступает в ядро, где образуется комплекс альдостерона со стереоспецифичным для него хроматином.

Рис. 12.11. Место действия гормонов и медиаторов в различных сегментах почечного канальца: 1 —

натрийуретический гормон, 2 — катехоламины, 3 — глюкокортикоиды, 4 — паратгормон, 5 — кальцитонин, 6 — вазопрессин, 7 — альдостерон

В связывании альдостерона, по-видимому, участвует негистонный хромосомный белок, молекулы альдостерона связываются ядром почечной клетки. В ядре стимулируется транскрипция определенного участка генетического кода, синтезированная мРНК переходит в цитоплазму и активирует образование белков, необходимых для увеличения транспорта Na+.

Альдостерон стимулирует образование компонентов натриевого насоса (Na, К- АТФазы), ферментов его энергетического обеспечения, а также веществ, облегчающих вход Na+ в клетку из просвета канальца. В обычных физиологических условиях одним из факторов, ограничивающих реабсорбцию натрия, является низкая проницаемость апикальной плазматической мембраны. Возрастание числа натриевых каналов мембраны (или времени их открытого состояния) увеличивает вход натрия в клетку и повышает в ней его содержание, что стимулирует активный перенос натрия.

Уменьшение реабсорбции натрия достигается под влиянием так называемого натрийуретического гормона, выработка которого возрастает при увеличении объема циркулирующей крови, повышении объема внеклеточной жидкости в организме. Структура и место секреции этого гормона установлены лишь в последние годы, хотя мысль о его существовании была высказана в конце 50-х гг. Оказалось, что таких факторов несколько: один из них выделяется в предсердии, другой — в гипоталамической области; ряд натрий-уретических веществ выделен из некоторых других органов. В настоящее время значение каждого из них в реальных процессах регуляции обмена натрия еще не ясно.

Реабсорбция ионов Сl- происходит в некоторых частях нефрона с помощью иных механизмов, чем реабсорбция Na+, что дает возможность раздельно регулировать выделение натрия и хлора почкой. В начальных частях проксимального отдела нефрона его стенка непроницаема для ионов Сl-, ионы Na+ всасываются вместе с НСО3-. В результате концентрация Сl- возрастает со 103 до 140 ммоль/л. В конечных участках проксимального канальца зона межклеточных соединений проницаема для ионов Сl-. Так как концентрация Сl- в канальцевой жидкости стала выше, чем в плазме крови, то Сl- по концентрационному градиенту движется в межклеточную жидкость и кровь. За ионами хлора следуют и ионы натрия.

Механизм реабсорбции ионов хлора в клетках толстого восходящего отдела петли

Генле иной. В люминальной мембране имеется своеобразный молекулярный механизм транспорта ионов Сl-, одновременно с которыми всасываются ионы Na+ и К+. В дистальном извитом канальце и собирательных трубках активно транспортируются через клетки ионы Na+, за ними по электрохимическому градиенту следуют ионы Сl-.

Различие способов реабсорбции ионов хлора имеет важное значение для понимания многообразия молекулярных механизмов реабсорбции ионов. Особенно следует подчеркнуть, что для этого процесса имеет значение не только отличие свойств ионных каналов и ионных переносчиков в люминальной мембране клеток, но и своеобразие свойств зоны клеточных контактов. В начальных участках нефрона они непроницаемы для неэлектролитов и ионов Сl-, последующие части проксимального канальца обладают высокой проницаемостью для ионов Сl-. В дистальном сегменте нефрона и собирательных трубках зона клеточных контактов очень плохо пропускает растворенные вещества, что обеспечивает возможность их экскреции почкой.

В почечных канальцах реабсорбируются калий, кальций, магний, фосфаты, сульфаты, микроэлементы. Почки являются важнейшим эффекторным органом в системе ионного гомеостаза. Новейшие данные свидетельствуют о существовании в организме систем регуляции баланса каждого из ионов. Для некоторых из ионов уже описаны специфические рецепторы, например натриорецепторы. Появились и первые данные о рефлекторной регуляции транспорта ионов в почечных канальцах, включающей рецепторы, центральные аппараты и эфферентные пути передачи сигнала почке.

Регуляцию реабсорбции ионов Са2+ почечных канальцах осуществляет ряд гормонов. При уменьшении концентрации кальция в крови паращитовидные железы выделяют паратгормон, который способствует нормализации уровня Са2+ крови за счет увеличения его реабсорбции в почечных канальцах и повышения резорбции кости (рис. 12.12). При гиперкальциемии стимулируется выделение в кровь гормона щитовидной железы — тиреокальцитонина, который снижает концентрацию кальция в крови и способствует увеличению его экскреции почкой. Важную роль в регуляции обмена Са2+ играет активная форма витамина D3 — 1,25 (OH)2-D3. В почечных канальцах регулируется уровень реабсорбции магния, хлора, сульфатов и других ионов.

Рис.12.12. Регуляция обмена кальция: 1 — почка, 2 — кишечник, 3 — пища, 4 — печень, 5 — плазма крови, 6

— щитовидная железа, 7 — кость, 8 — паращитовидная железа; пунктирными стрелками обозначено изменение реакции при увеличении или уменьшении концентрации кальция в крови

12.6.4.Канальцевая секреция

Всовременной физиологической литературе, касающейся деятельности почек, термин секреция имеет два значения. Первое из них описывает процесс переноса вещества через клетки из крови в просвет канальца в неизменном виде, что увеличивает скорость

экскреции вещества почкой, Второе — выделение из клетки в кровь или в просвет канальца синтезированных в почке физиологически активных веществ (например, простагландины, брадикинин и др.) или экскретируемых веществ (например, гиппуровая кислота). В этом разделе основное внимание будет уделено описанию процесса секреции в первом значении этого слова.

Секреция органических и неорганических веществ — один из важных процессов, обеспечивающих процесс мочеобразования. У рыб некоторых видов в почке отсутствуют клубочки. В таких случаях секреция играет ведущую роль в деятельности почки. В почках большинства других классов позвоночных, в том числе и у млекопитающих, секреция обеспечивает выделение из крови в просвет канальцев доиоднительных количеств некоторых веществ, которые могут фильтроваться и в почечных клубочках.

Таким образом, секреция ускоряет выделение почкой некоторых чужеродных веществ, конечных продуктов обмена, ионов. В почке у млекопитающих секретируются органические кислоты (пенициллин, парааминогиппуровая кислота — ПАГ, диодраст, мочевая кислота), органические основания (холин, гуанидин), неорганические вещества (калий). Почка гломерулярных и агломерулярных морских костистых рыб способна к секреции ионов магния, кальция, сульфатов. Различают место секреции разных веществ. В почке всех позвоночных местом секреции органических кислот и оснований служат клетки проксимального сегмента нефрона, особенно его прямой части, секреция калия преимущественно происходит в клетках дистального извитого канальца и собирательных трубок.

Механизм процесса секреции органических кислот. Рассмотрим этот процесс на примере выделения почкой ПАГ. После введения в кровь ПАГ ее секреция почкой нарастает, и очищение от нее крови значительно превышает величину очищения крови от одновременно введенного инулина. Это означает, что ПАГ не только фильтруется в клубочках, но и помимо клубочков в просвет нефрона поступают значительные ее количества. Экспериментально было показано, что такой процесс обусловлен секрецией ПАГ из крови в просвет проксимальных отделов канальцев. В мембране клетки этого канальца, обращенной к межклеточной жидкости, имеется переносчик, обладающий высоким сродством к ПАГ. В присутствии ПАГ образуется комплекс переносчика с ПАГ, который перемещается в мембране и на ее внутренней поверхности распадается, высвобождая ПАГ в цитоплазму, а переносчик приобретает снова способность перемещаться к внешней поверхности мембраны и соединяться с новой молекулой ПАГ. Этот процесс происходит с затратой энергии, которая непрестанно поставляется к местам активного транспорта.

Угнетение дыхания цианидами, разобщение дыхания и окислительного фосфорилирования динитрофенолом снижает и прекращает секрецию. В обычных физиологических условиях уровень секреции зависит от числа переносчиков в мембране. Секреция ПАГ возрастает пропорционально увеличению концентрации ПАГ в крови до тех пор, пока все молекулы переносчика не насытятся ПАГ. Максимальная скорость транспорта ПАГ достигается в тот момент, когда количество ПАГ, доступное для транспорта, равно количеству молекул переносчика, которые могут образовывать комплекс с ПАГ. Эта величина определяется как максимальная способность к транспорту ПАГ — ТтРАН (см. рис. 12.7). Поступившая в клетку ПАГ, движется по цитоплазме к апикальной мембране и через нее специальным механизмом выделяется в просвет канальца.

Секреция органических оснований. Этот процесс (например, секреция холина), подобно выведению органических кислот, происходит в проксимальном сегменте нефрона и характеризуется определенной величиной максимального транспорта т). Системы секреции органических кислот и оснований функционируют независимо друг от друга. Это было показано экспериментально, когда животным вводили пробенецид — вещество, угнетающее секрецию органических кислот. В таком опыте секреция органических осно-

ваний не нарушалась.

Для определения секреции в почечных канальцах рассчитывают очищение крови от данного вещества и очищение от инулина. Если клиренс исследуемого вещества превышает клиренс инулина, это указывает на секрецию в канальцах. При одновременном определении в плазме крови исследуемого вещества (а) и инулина (In) достаточно рассчитать отношение их концентрационных показателей Uаа:UIn/PIn, так как объем выделяемой мочи будет одинаковым.

Если это отношение больше единицы, то вещество секретируется, если меньше — реабсорбируется. Однако это упрощенная оценка системы транспорта веществ в нефроне. Некоторые из них, например ионы калия и мочевая кислота, могут подвергаться и реабсорбции, и секреции. Поэтому наряду с измерением концентрационных показателей необходимо изучение особенностей обработки исследуемых веществ в отдельных частях почечных канальцев.

Секреторную функцию проксимальных отделов нефрона измеряют с помощью веществ, которые выделяются из организма главным образом посредством канальцевой секреции (например, ПАГ, диодраст). Одно из этих веществ вводят в кровь вместе с инулином, который служит для одновременного измерения клубочковой фильтрации. Величину транспорта (Т) органического вещества (ПАГ) при секреции (s) из крови в просвет канальца определяют по разности между выделением этого вещества почкой

(UРАНV) и его фильтрацией в клубочках (CInPРАН):ТSPAH = UРАНV — CInPРАН. При условии полного насыщения секреторного аппарата ПАГ определяется величина максимального

канальцевого транспорта ПАГ — ТтРАН. У человека ТтРАН составляет 79 мг/мин при расчете на 1,73 м2 поверхности тела.

Способность клеток проксимальных канальцев практически полностью извлекать из околоканальцевой жидкости и соответственно из крови околоканальцевых капилляров такие органические кислоты, как ПАГ и диодраст, была использована для измерения эффективного почечного кровотока — кровоснабжения коры почки. Непрямой метод измерения величины почечного кровотока основан на способности клеток проксимальных почечных канальцев секретировать ПАГ и диодраст столь эффективно, что при невысокой их концентрации в артериальной крови последняя полностью очищается от этих веществ при однократном прохождении через почку. Очищение от ПАГ (СРАН) эквивалентно плазмотоку и определяется по формуле UРАНРАН)V, где U и Р — концентрация ПАГ в моче и плазме крови, V — диурез, СРАН — величина эффективного почечного плазмотока, т. е. то количество плазмы, которое протекает по сосудам коры почки и омывает клетки проксимального сегмента нефрона. Так как эритроциты не содержат ПАГ, для расчета величины эффективного почечного кровотока (ERBF) необходимо учитывать соотношение между эритроцитами и плазмой крови (показатель гематокрита Ht): ERBF = СРАН/(1 —

Ht).

Общий кровоток и плазмоток через почки может быть рассчитан в том случае, если известно, сколько ПАГ не удаляется клетками канальцев. Так как считают, что ПАГ полностью извлекается из крови, протекающей в коре почки, то наличие в почечной вене небольшого количества ПАГ обусловлено той частью крови, которая минует кору почки и поступает в сосуды мозгового вещества. Доля кровотока через все мозговое вещество мала по сравнению с общим почечным кровотоком и составляет от 7 до 9%, а кровоток во внутреннем мозговом веществе (сосочек) равен лишь 1 %.

Секреция неорганических веществ. Клетки почечных канальцев способны не только к секреции органических кислот и оснований, но и некоторых неорганических веществ. В почке проходных и морских костистых, а также хрящевых рыб могут секретироваться ионы калия, магния, кальция, сульфаты. В почках млекопитающих секретируются ионы К+ и Н+. Транспорт калия в нефроне отличается от переноса натрия тем, что К+ подвергается не только реабсорбции, но и секретируется в почке клетками конечных отделов нефрона и собирательных трубок.

При реабсорбции калий поступает в клетку нефрона из просвета канальца. В клетке концентрация К+ выше, чем в околоканальцевой жидкости, и калий диффундирует из клетки через базальную плазматическую мембрану в межклеточное вещество, а затем уносится кровью. При секреции калий вначале поступает в клетку из межклеточной жидкости в обмен на натрий с помощью Na/K-насоса (Na, К-АТФаза), который одновременно удаляет Na+ из клетки. Тем самым поддерживается высокая внутриклеточная концентрация К+.

При избытке калия в организме начинается его секреция клетками в просвет канальца, зависящая от ряда факторов, прежде всего от степени возрастания проницаемости для К+ мембраны клетки, обращенной в просвет канальца. В ней открываются «каналы», по которым калий по градиенту концентрации может выходить из клетки. Скорость секреции К+ зависит от градиента электрохимического потенциала на апикальной мембране клетки: чем больше ее электроотрицательность, тем выше уровень секреции К+. Поэтому введение слабореабсорбируемых анионов, например сульфатов, увеличивает секрецию К+.

Таким образом, секреция калия зависит от его внутриклеточной концентрации, проницаемости для калия апикальной мембраны и градиента электрохимического потенциала на мембране. В регуляции секреции К+ важное значение имеет гормон коры надпочечника альдостерон, который увеличивает реабсорбцию натрия и одновременно усиливает секрецию калия. Почти весь профильтровавшийся в клубочках калий реабсорбируется в отделах нефрона, расположенных до дистального извитого канальца. Калий, выделяемый с мочой, секретируется в конечных частях дистального сегмента нефрона и собирательных трубках.

12.6.5.Синтез веществ в почке

Впочке образуются некоторые вещества, выделяемые в мочу (например, гиппуровая кислота, аммиак), а также поступающие в кровь (ренин, простагландины, глюкоза, появляющаяся при глюконеогенезе в почке, и др.). Гиппуровая кислота синтезируется в клетках канальцев из бензойной кислоты и гликокола. В опытах на изолированной почке было показано, что при введении в почечную артерию раствора бензойной кислоты и гликокола в моче появляется гиппуровая кислота. В клетках канальцев при дезаминировании аминокислот, главным образом глутамина, из аминогрупп образуется аммиак. Он поступает преимущественно в мочу, но частично проникает и через базальную плазматическую мембрану в кровь: в почечной вене аммиака больше, чем в почечной артерии.

12.6.6.Осмотическое разведение и концентрирование мочи

Почки практически всех пресноводных и наземных позвоночных способны выделять мочу, имеющую меньшее, чем кровь, осмотическое давление. Это дает им возможность экскретировать избыток воды, и повышать сниженную осмоляльность крови до нормальных значений. При дефиците воды, когда осмотическое давление крови может быть повышено, необходимо экономить воду и экскретировать осмотически активные вещества в виде гиперосмотической мочи. Такой способностью обладают только млекопитающие и птицы, в почках которых имеется мозговое вещество. Чем более развито мозговое вещество в почке, чем более сформирована его внутренняя часть, в которой находятся тонкие отделы петель Генле, тем эффективнее осуществляется осмотическое концентрирование мочи. Так, у морской свинки всего 5% нефронов имеют длинные петли Генле, у белых крыс их 28%, а у больших песчанок, обитающих в пустыне, таких нефронов 100%. В почке морской свинки внутреннее мозговое вещество слабо развито, у большой песчанки почечный сосочек очень длинный, свисающий в почечную лоханку. Почки большой песчанки способны вырабатывать мочу, осмотическое давление

которой превышает 100 атм.

Осмотическое концентрирование. В зависимости от состояния водного баланса организма почки млекопитающих и птиц выделяют разведенную или концентрированную мочу. В процессе осмотического концентрирования мочи в почке принимают участие все отделы канальцев, сосуды мозгового вещества, межклеточная ткань (рис. 12.13.). В почках у млекопитающих 2/3 ультрафильтрата, образовавшегося в клубочках, реабсорбируется к концу проксимального сегмента. Оставшаяся в канальцах жидкость содержит осмотически активные вещества в такой же концентрации, как и плазма крови, хотя и отличается от нее по составу вследствие реабсорбции органических веществ и ионов. Далее канальцевая жидкость переходит из коркового слоя почки в мозговое вещество — в нисходящий отдел петли Генле — и движется до вершины почечного сосочка, где каналец изгибается на 180° и моча переходит в восходящий отдел петли, расположенный параллельно ее нисходящему отделу. В нем жидкость течет в направлении от вершины сосочка к коре почки.

Рис. 12.13. Процесс осмотического разведения (А) и концентрирования (Б) мочи: I — корковое вещество, II — наружное мозговое вещество, III — внутреннее мозговое вещество почки; 1 — клубочек, 2 — проксимальный извитой каналец, 3 — нисходящая тонкая ветвь, 4 — восходящая тонкая ветвь, 5 — восходящая толстая ветвь петли Генле, 6 — дистальный извитой каналец, 7 — собирательная трубка коркового слоя почки, 8 — собирательная трубка наружного мозгового вещества почки, 9 — собирательная трубка внутреннего мозгового вещества почки; цифрами указана осмоляльность жидкости просвета канальца и межклеточного вещества; стрелками из просвета канальца обозначена реабсорбция воды (Н20), неэлектролитов (Нэ), электролитов (Э), мочевины (М); сплошными стрелками — активный транспорт; пунктирными — за счет диффузии

Функциональное значение различных отделов петли неоднозначно. Когда жидкость из проксимального канальца поступает в тонкий нисходящий отдел петли Генле, она попадает в зону почки, в межклеточном веществе которой концентрация осмотически активных веществ выше, чем в коре почки. Это повышение осмолярной концентрации в наружной зоне мозгового вещества обусловлено деятельностью толстого восходящего отдела петли Генле. Его стенка непроницаема для воды, а клетки транспортируют ионы Сl- и Na+ в межклеточное вещество. Стенка нисходящего отдела петли проницаема для воды, и вода всасывается из просвета канальца в окружающую межуточную ткань почки

по осмотическому градиенту. Осмотическая концентрация жидкости в восходящем отделе петли на границе коры и мозгового вещества составляет около 200 мосм, т. е. она ниже, чем в плазме крови и ультрафильтрате.

Поступление ионов хлора и натрия в межклеточное вещество наружного мозгового слоя увеличивает его осмолярную концентрацию до 400 мосм. На такую же величину растет и осмолярная концентрация жидкости, находящейся в просвете нисходящего отдела петли. Через его проницаемую для воды стенку в межуточную ткань по осмотическому градиенту переходит вода, а осмотически активные вещества остаются в просвете этого отдела канальца.

Чем дальше от коры по продольной оси почечного сосочка исследуют жидкость в нисходящем колене петли, тем выше оказывается ее осмолярная концентрация. В соседних смежных участках нисходящего отдела петли имеется лишь небольшое нарастание осмотического давления, но по длиннику почечного сосочка (внутреннего мозгового вещества) осмолярная концентрация постепенно растет от 300 мосм/л почти до 1450 мосм/л у человека или почти до 4500 мосм/л у большой песчанки.

На вершине почечного сосочка осмолярная концентрация жидкости в петле Генле возрастает в несколько раз, объем ее уменьшается. При дальнейшем движении жидкости по восходящему отделу петли продолжается реабсорбция ионов Сl- и Na+, вода же остается в просвете канальца. В начальные отделы дистального извитого канальца всегда поступает гипотоническая жидкость, концентрация осмотически активных веществ в которой менее 200 мосм/л.

Вусловиях дефицита воды в организме гипофиз усиливает секрецию антидиуретического гормона (аргинин-вазопрессин, АДГ), что увеличивает проницаемость стенок конечных частей дистального сегмента и собирательных трубок для воды. Из гипотонической жидкости по осмотическому градиенту реабсорбируется вода, осмолярная концентрация жидкости в этом отделе увеличивается до 300 мосм/л, т. е. жидкость в просвете канальца становится изоосмотичной крови в системном кровотоке и коре почки.

Окончательное осмотическое концентрирование мочи наступает в собирательных трубках. Они расположены параллельно канальцам петли Генле в мозговом веществе почки. Как отмечалось выше, в межклеточной жидкости мозгового вещества почки возрастает осмолярная концентрация. Вследствие этого из жидкости собирательных трубок реабсорбируется вода и концентрация мочи в них увеличивается, уравновешиваясь со все повышающейся концентрацией осмотически активных веществ во внутреннем мозговом веществе почки. В конечном счете, выделяется гиперосмотическая моча, в которой максимальная концентрация осмотически активных веществ может быть равна осмолярной концентрации межклеточной жидкости на вершине почечного сосочка.

Внаружной зоне мозгового вещества почки повышение осмолярности главным образом основано на транспорте ионов Na+ и Сl-. Увеличение осмолярной концентрации во внутренней зоне мозгового вещества почки зависит от нескольких механизмов, обеспечивающих накопление ионов натрия, хлора и мочевины. Особую роль для осмотического концентрирования играет в этой части почки аккумуляция мочевины, что происходит следующим образом.

Стенка проксимального канальца проницаема для мочевины, что приводит к реабсорбции до 50 % профильтровавшейся мочевины. Однако при извлечении жидкости из извитого дистального канальца оказалось, что в нем содержание мочевины очень высоко.

Показано, что существует система внутрипочечного кругооборота мочевины, участвующая в осмотическом концентрировании мочи. В просвете собирательных трубок вследствие реабсорбции воды концентрация мочевины повышается. АДГ увеличивает проницаемость собирательных трубок в мозговом веществе не только для воды, но и для мочевины, в результате она диффундирует в мозговое вещество почки. Мочевина