
- •Конспект лекций
- •С о д е р ж а н и е
- •Лекция 1 Введение
- •Основная литература
- •Дополнительная литература
- •План-график самостоятельной работы студентов
- •1.1. Типы электроприводов
- •1.2. Краткий исторический обзор развития электропривода
- •Вопросы для самопроверки
- •Глава 2. Механика электропривода
- •2.1. Приведение моментов и сил сопротивления, инерционных масс и моментов инерции
- •2.2. Механические характеристики производственных механизмов и электрических двигателей. Установившиеся режимы
- •2.3. Уравнение движения электропривода
- •2.4. Время ускорения и замедления привода
- •Вопросы для самопроверки
- •Глава 3. Механические характеристики электродвигателей
- •3.1. Механические характеристики двигателя постоянного тока независимого возбуждения
- •3.2. Механические характеристики двигателя постоянного тока независимого возбуждения
- •3.3. Механические характеристики двигателя постоянного тока последовательного возбуждения
- •Вопросы для самопроверки
- •Лекция 4
- •3.4. Механические характеристики асинхронного двигателя
- •3.5. Механические характеристики асинхронного двигателя в тормозных режимах
- •3.6. Механические характеристики синхронного двигателя
- •Вопросы для самопроверки
- •Глава 4. Регулирование скорости электроприводов
- •4.1. Основные показатели регулирования скорости электроприводов
- •4.2. Регулирование угловой скорости двигателя постоянного тока независимого возбуждения изменением магнитного потока
- •4.3. Реостатное регулирование угловой скорости двигателя постоянного тока независимого возбуждения
- •4.4. Регулирование угловой скорости двигателя постоянного тока независимого возбуждения изменением подводимого к якорю напряжения
- •4.4.1. Система генератор — двигатель'
- •4.4.2. Регулирование скорости двигателя постоянного тока по системе тп-д
- •Вопросы для самопроверки
- •Лекция 6
- •4.5. Регулирование скорости электроприводов переменного тока
- •4.5.1. Реостатное регулирование скорости асинхронного электропривода
- •4.5.2. Частотное регулирование асинхронных электроприводов
- •Вопросы для самопроверки
- •Глава 5. Переходные режимы в электроприводах
- •5.1. Общие положения
- •5.2. Переходные процессы в электроприводах с двигателя постоянного тока независимого возбуждения
- •5.2.1. Общие дифференциальные уравнения и их решение
- •5.2.2. Общие дифференциальные уравнения и их решение без учета электромагнитных процессов
- •5.2.3 Реостатный пуск
- •5.2.4. Динамическое торможение
- •5.2.5. Торможение противовключением
- •Вопросы для самопроверки
- •5.3. Переходные режимы в приводах с асинхронными двигателями трехфазного тока
- •5.3.1. Пуск асинхронного двигателя
- •5.3.2. Торможение противовключением и реверсирование
- •5.3.3. Динамическое торможение
- •Вопросы для самопроверки
1.2. Краткий исторический обзор развития электропривода
Развитие промышленности стало возможным лишь при переходе от ручного привода исполнительных механизмов к механическим приводам. Еще в глубокой древности применялись простейшие способы механизации работ с помощью водяных колес, приводимых в движение силой падающей или текущей воды.
В XVIII в. появились многочисленные фабрики, где широко применялись водяные двигатели, а затем и паровые машины. Вплоть до конца XIX-го столетия единственным типом привода был чисто трансмиссионный, так как водяной двигатель или паровая машина соединялись с помощью канатов и ремней с главной трансмиссией, а все рабочие машины отдельного цеха или даже целой фабрики приводились в движение от этой трансмиссии.
Переход к более совершенным типам привода — индивидуальному и взаимосвязанному, которые полнее учитывают основные условия работы различных производственных механизмов, стал возможен лишь на базе широкой электрификации. Применение электропривода создали новую эпоху в развитии промышленности.
Первый электродвигатель, с помощью которого осуществлен электропривод, был построен в 1834—1838 гг. петербургским академиком Б. С. Якоби, в 1838 г. на Неве были проведены испытания этого двигателя, установленного на небольшом катере.
Однако отсутствие экономичных источников электрической энергии не позволило внедрить электропривод в промышленность.
Открытие явления вращающегося магнитного поля в 80-х годах XIX века (Г. Феррарис и Н. Тесла) положило начало конструированию многофазных электродвигателей. Наиболее экономичной среди многофазных систем оказалась система трехфазного тока, основы которой были разработаны в 1889—1891 г.г. русским инженером М. О. Доливо-Добровольским. Система трехфазного тока явилась тем новым техническим средством, с помощью которого разрешался весь комплекс проблемы производства, передачи, распределения и потребления электроэнергии. Разработкой трехфазной системы были созданы предпосылки для развития электрификации.
Создание М. О. Доливо-Добровольским в 1889 г. трехфазного асинхронного двигателя ознаменовало новый этап в развитии электропривода и открыло широкую дорогу промышленному применению электричества.
Несомненные экономические преимущества централизованного производства электроэнергии и простота ее распределения привели к тому, что электродвигатель, постепенно вытесняя другие виды двигателей, занял первое место во всех отраслях промышленности.
Претворение в жизнь плана индустриализации привело к созданию в Советском Союзе мощной машиностроительной промышленности и к выпуску огромного количества электрических машин, аппаратов и других изделий электропромышленности.
Так, в черной металлургии уже в первой пятилетке было введено в строй 19 мощных прокатных станов, а во второй 60. В 1931—1932 гг. разрабатывается отечественная система комплексной автоматизации электроприводов загрузки доменных печей, создается электрооборудование для врубовых машин угольной промышленности, взаимосвязанный электропривод бумагоделательных машин и т. п.
В 1936—1937 гг. были разработаны на принципе следящего привода схемы автоматического управления нажимными винтами прокатных станов.
Последующие годы (1940—1945 гг.) ознаменованы разработкой новых принципов построения систем автоматического управления электроприводами, основанных на применении замкнутых систем с обратными связями и использовании электромашинных, электронных и в дальнейшем магнитных усилителей.
Широкое применение усилителей позволило осуществить непрерывное управление и обеспечить необходимое формирование переходных процессов в электроприводах большого числа механизмов с плавным и большим диапазоном электрического регулирования скорости.
Еще в 30 годах прошлого столетия проводились работы, связанные с заменой электромашинного преобразовательного агрегата системы генератор - двигатель статическим. Первая установка такого рода, в которой двигатель постоянного тока для привода шахтного подъемника питался от управляемого ртутного выпрямителя, была пущена в эксплуатацию в 1940 г. Замена электромашинного агрегата ртутным выпрямителем заметно удешевила установку и привела к повышению КПД электропривода.
Революционизирующее влияние на развитие автоматизированного электропривода оказали разработка и производство полупроводниковых приборов - транзисторов, тиристоров, которые благодаря своим преимуществам стали вытеснять ранее применявшиеся в электроприводе устройства с электронными лампами и ионными приборами. Наряду с системой генератор—двигатель (Г - Д), все шире используется более быстродействующая система тиристорный преобразователь - двигатель (ТП - Д).
Быстрое развитие полупроводниковой техники, существенное увеличение выпускаемых тиристоров обусловливают резкое уменьшение их стоимости, поэтому наряду с широким использованием тиристорных преобразователей для приводов постоянного тока осваиваются автоматизированные электроприводы переменного тока, управляемые различного рода тиристорными преобразователями.
Привод переменного тока, в котором используется асинхронный двигатель с короткозамкнутым ротором с частотным управлением, является весьма перспективным и во многих случаях полностью заменяет систему ТП—Д постоянного тока.
Современный автоматизированный электропривод представляет собой сложную электромеханическую систему. Основные блоки системы управления реализуют: ввод данных, слежение за материалом, регистрацию измеряемых данных технологического процесса, автоматическую адаптацию и оптимальное по времени регулирование процесса и другие функции.
Системы автоматического управления электроприводам постоянного и переменного тока, в которых используются все достижения полупроводниковой техники, а также возможности электронной вычислительной техники, позволяют существенно упростить конструкции производственных механизмов, повысить их точность и поднять производительность, т. е. способствовать техническому прогрессу.
Широкая автоматизация механизмов на базе следящих систем электроприводов, систем с цифровым программным управлением и средств комплексной автоматизации — обширная и весьма важная развивающаяся область автоматизированного электропривода.