Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СВЧ / Приборы СВЧ Федоров.pdf
Скачиваний:
426
Добавлен:
10.02.2015
Размер:
4.34 Mб
Скачать

106

§7.4. Стабилизация рабочего вида колебаний

Вмагнетронах широко используется частотное разделение видов колебаний применением связок между резонаторами (рис. 7.11,а) или неодинаковых резонаторов

(разнорезонаторные магнетроны) (рис. 7.11,б).

 

 

 

 

 

 

Рис. 7.11

 

Рис. 7.12.

Зависимость частоты колебаний от номера п для эквивалентной схемы колебательной системы восьмирезонаторного магнетрона с емкостной связью между резонаторами без связок, определяемая формулой (7.7), приведена на рис. 7.12. Наименьшая разница частот f получается между рабочим видом (п=4) и видом п=3. В общем случае разница частот между π-видом (n=N/2) и ближайшим видом n=N/2–1 становится меньше при увеличении числа резонаторов N и уменьшении величины емкостной связи отношения C1/C, (см. рис. 7.4). Величина f/f небольшая – порядка 1% или меньше. Для устойчивой работы магнетрона на π-виде колебаний желательно иметь различие частот 10–20%. При одинаковых резонаторах f увеличивается с помощью связок.

Связки представляют собой 'проволочные или ленточные проводники, расположенные над торцами анодного блока и присоединенные в определенной последовательности к его сегментам. На рис. 7.11,а показан вариант двойных кольцевых связок. Каждая связка присоединена к анодному блоку, через один сегмент. Если в магнетроне возбуждены колебания π-вида, то каждая связка соединяет точки с одинаковым потенциалом и не изменяет распределения поля. Однако между связкой и анодным блоком имеется емкость, которая понижает резонансную частоту π-вида колебаний по сравнению со случаем отсутствия связок.

Предположим теперь, что возбуждаются другие виды колебаний (п<N/2). Тогда точки присоединения связок уже не имеют одинакового потенциала. По связкам потекут уравнительные токи, влияние которых эквивалентно подключению индуктивности параллельно двум резонаторам. Это повышает частоты нерабочих видов колебаний.

На рис. 7.12 показана зависимость частоты видов колебаний от номера п для восьмирезонаторного магнетрона со связками и без них. В результате применения связок частота л-вида колебаний уменьшилась, и частота других видов повысилась, т. е. увеличилась разность частот.

Применение связок, правильный выбор рабочего напряжения и его стабилизация позволяют подавить паразитные виды колебаний в магнетроне с непрерывным режимом работы. Однако в импульсных магнетронах существует опасность возбуждения паразитных видов колебаний на переднем фронте импульса. Уже отмечалось, что ниже пороговой прямой, соответствующей π-виду

Рис. 7.13 колебаний, располагаются пороговые прямые для

107

пространственных гармоник других видов колебаний (низковольтные виды). При очень пологом фронте импульса, т. е. при малой скорости нарастания напряжения, могут успеть установиться колебания этих видов. Для того чтобы низковольтные колебания не возбуждались совсем или не успели нарасти до заметной амплитуды, необходимо начальную часть фронта 1 импульса (рис. 7.13) сделать крутой. В части 2 фронта, которая соответствует напряжению возбуждения л-вида колебаний, наклон необходимо уменьшить, чтобы успели установиться колебания этого вида. Идеализированный импульс напряжения такой формы и показан на рис. 7.13. К форме импульса предъявляются серьезные требования, для каждого типа магнетрона необходима оптимальная форма импульса.

Возможно эффективное подавление паразитных видов колебаний при синхронизации (подвозбуждении) магнетрона от генератора, частота которого совпадает с частотой π- вида колебаний.

108

7.5. Параметры и характеристики многорезонаторного магнетрона

Электронный КПД. Приближенно будем считать, что максимальная потенциальная энергия электрона, которая может перейти в энергию СВЧ-поля при анодном напряжении Ua, Wп=eUa. Однако часть этой энергии преобразуется в кинетическую энергию электрона и рассеивается в виде тепла при соударении электронов с анодом Wк=mv2а/2, где vа – скорость электрона у анода. Поэтому электронный КПД можно определить по формуле

(7.20)

Рассмотрим наихудший случай, когда электрон попадает на анод с максимальной скоростью, которую можно считать равной скорости электрона в верхней точке циклоиды. По формуле (5.13)

(7.21)

где vп – скорость переносного движения; Е – напряженность статического поля в пространстве взаимодействия; В – индукция; d – зазор между анодом и катодом. Следовательно, Wк.макс=2mU2a/d2B2 и

(7.22)

В критическом режиме работы магнетрона существует связь Uа.кр и Вкр, устанавливаемая выражением (7.3) или (7.4). Используя (7.4), можно преобразовать (7.22) к виду

ηэ =1(Ua /Ua .кр)(Bкр / B)2 .

Это соотношение устанавливает связь электронного КПД с режимом работы магнетрона, определяемым анодным напряжением и индукцией. В критическом режиме Ua=Ua.кp, B=Bкр и ηэ=0. В этом случае, как уже указывалось ранее, нет самовозбуждения. Чем сильнее режим работы отличается от критического, тем выше электронный КПД. В реальных многорезонаторных магнетронах электронный КПД достигает 50–70% и более. Как правило, магнетрон – это мощный генератор СВЧ-колебаний, для которого получение значительного электронного КПД весьма существенно.

Рассмотрим влияние индукции В на электронный КПД. Величины Ua и В в (7.22) связаны условием синхронизма. Эта связь изображается пороговыми прямыми в соответствии с уравнением (7.19). Подставляя (7.19) непосредственно в (7.22), получаем КПД для нулевой пространственной гармоники:

(7.23)

По формуле (7.23) с увеличением индукции В происходит рост электронного КПД. При увеличении В необходимо пропорционально увеличивать Uа, чтобы сохранилось условие синхронизма (нахождение на одной пороговой прямой). Поэтому переносная скорость vп и максимальное значение скорости около анода vа.макс в (7.21) остаются неизменными. Таким образом, в (7.20) энергия Wк не изменилась, a Wп увеличилась из-за роста анодного напряжения Uа, следовательно, электронный КПД должен возрасти.

Из (7.23) можно также сделать очень важный вывод о зависимости электронного КПД от номера вида колебаний при постоянной индукции В. Наибольший КПД получают при π-виде колебаний, так как с ростом п КПД увеличивается. На рис. 7.14 показана теоретическая зависимость электронного КПД от индукции В и номера вида. В соответствии с (7.23) кривые имеют вид гипербол.

Электронное смещение частоты. Электронным смещением частоты называют связь частоты генерируемых колебаний с анодным током, по которому обычно контролируют режим работы магнетрона (рис. 7.15).

Крутизна электронного смещения частоты в рабочем режиме

SЭСЧ=dfг/dIa, МГц/А.

109

 

 

 

 

 

 

Рис. 7.14

 

Рис. 7.15

Наибольшую SЭСЧ получают для данного магнетрона при малых анодных токах: она может составлять несколько десятков мегагерц на ампер или больше.

Рабочие характеристики. Рабочими характеристиками магнетрона называют связь между анодным напряжением и током при постоянных мощности, КПД, частоте или индукции поля, т. е. эти характеристики позволяют выбрать режим работы (Uа, Iа) при заданных мощности, КПД, частоте или индукции.

Связь Uа и Iа при B=const называют вольт-амперной характеристикой магнетрона, или кривой постоянной индукции (рис. 7.16,а). Объяснение хода вольт-амперных характеристик непосредственно следует из диаграммы рабочих режимов (см. рис. 7.10,а). Возбуждение колебаний начинается при пороговом напряжении. Дальнейшее повышение Ua, приводит к быстром возрастанию Iа. При переходе к другому значению индукции характеристика смещается, так как самовозбуждение в соответствии с диаграммой рабочих режимов начнется при большем Ua.

Кривые постоянной генерируемой мощности показаны на рис. 7.16,б. Генерируемая мощность Р=ηэIаUа. Если бы электронный КПД ηэ оставался постоянным при различных

Рис. 7.16

Iа, то связь Ua, и Iа при заданной мощности изображалась бы гиперболой. В действительности ηэ зависит от Iа и поэтому кривые постоянной мощности отклоняются от гиперболы. Кривые постоянной частоты определяются электронным смещением частоты.

Соседние файлы в папке СВЧ