Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СВЧ / Приборы СВЧ Федоров.pdf
Скачиваний:
419
Добавлен:
10.02.2015
Размер:
4.34 Mб
Скачать

77

§ 4.7. Принцип работы генераторной ЛОВО

Схема генераторной ЛОВ показана на рис. 4.21. Она отличается от усилительной ЛОВ тем, что входное устройство заменено поглотителем.

Как известно, в любом электронном потоке имеются флуктуации скорости электронов и тока с любой частотой. Поэтому в замедляющей системе ЛОВ возбуждаются гармонические составляющие с любыми частотами, которые распространяются в обоих направлениях: в сторону поглотителя и выходного конца. Вследствие периодичности структуры замедляющей системы поле шумовых колебаний с любой частотой должно быть представлено бесконечной суммой пространственных прямых и обратных гармоник. Среди шумовых пространственных гармоник, фазовая скорость которых совпадает по направлению со скоростью электронов, найдется одна, у которой фазовая скорость немного меньше скорости электрона, так что будет выполнено условие синхронизма, т. е. условие усиления. Далее описание процесса взаимодействия такое же, как в усилительной ЛОВ. Обратная пространственная гармоника, для которой выполняется условие синхронизма, вызывает модуляцию электронного потока по скорости и, следовательно, по плотности, что, в свою очередь, приводит к передаче энергии от потока к полю, т. е. к увеличению амплитуды гармоники и росту всего поля в замедляющей системе. Если мощность, отдаваемая электронным потоком, превысит мощность потерь в системе, возникает генерация колебаний.

Рис. 4.21

Поясним назначение поглотителя в генераторной ЛОВ. Предположим, что нагрузка, подключенная к замедляющей системе около электронной пушки, не согласована с системой. Реальная волна, которая двигается к нагрузке, через обратную пространственную гармонику взаимодействует с электронным потоком и после первого отражения от нагрузки идет по замедляющей системе к коллекторному концу, но уже не взаимодействуя с электронами. При отсутствии поглотителя у коллекторного конца пришедшая волна снова отражается и опять двигается к нагрузке, взаимодействуя с электронным потоком. Таким образом, распределение поля – это результат наложения первичной волны и дважды отраженной. Если их фазы совпадают, то выходная мощность возрастает, если противоположны, – то уменьшается. Так как сдвиг фазы при данной длине ЛОВ зависит от частоты, то должны наблюдаться колебания выходной мощности по рабочему диапазону частот. Можно сказать, что поглотитель устраняет паразитную обратную связь, которая возникает при неполном согласовании с нагрузкой. При идеальном согласовании системы с нагрузкой поглотитель вблизи коллектора был бы не нужен. Введение поглотителя, хорошо согласованного с замедляющей системой в рабочем диапазоне частот, устраняет также и возможность генерации колебаний в ЛОВ на прямых пространственных гармониках.

78

§ 4.8. Параметры и характеристики генераторных ЛОВО

Частота генерируемых колебаний. Частоту колебаний обычно находят из баланса фаз автоколебательной системы, т. е. из условия, что сумма всех сдвигов фазы в замкнутом контуре, определяющем усиление и положительную обратную связь, кратна величине 2π. Это условие применимо для расчета частоты в том случае, если цепь обратной связи может быть выделена. Особенность ЛОВ состоит в том, что в ней обратная связь осуществляется на любом элементе длины. Поэтому фазовое условие самовозбуждения колебаний, определяющее частоту колебаний, следует связывать с условием наилучшей передачи энергии от электронного потока СВЧ-полю.

В ЛОВ происходит взаимодействие электронного потока с полем бегущей волны обратной пространственной гармоники. Наилучшие условия для передачи энергии от потока полю в том случае, если образовавшийся сгусток электронов не выходит из тормозящего поля волны. Другими словами, необходимо, чтобы относительный сдвиг фазы волны Ф0 и сгустка не превышал π, т. е.

(4.43)

где ωl/vфp определяет сдвиг фазы, создаваемый волной обратной пространственной гармоники, a ωl/v0 – электронным потоком.

Очевидно, что в общем случае Ф0 может быть равно нечетному числу π:

(4.44)

Число п называют порядком колебаний в ЛОВ или номером зоны колебаний. Для зоны

п=1 Ф0=3π, поэтому 2/3 пути электронные сгустки проходят в тормозящем, а 1/3 – в ускоряющем поле, отбирая на этом участке энергию от поля волны. В связи с этим результирующее значение энергии, передаваемой от электронного потока полю, становится меньше, чем в зоне п=0. Передача энергии уменьшается при больших номерах зон. Наибольшая мощность в зоне n=0, эту зону обычно называют основной. В связи с отмеченной особенностью взаимодействия сгустков и поля пусковой ток, требуемый для начала самовозбуждения, увеличивается с ростом номера п. Расчеты показали, что пусковой ток для зоны п=1 примерно в шесть раз выше, чем для зоны п=0. При токе пучка, большем пускового тока для зоны n=1, возможно одновременное существование колебаний обеих зон.

Фазовые условия (4.44) используют и для определения частоты генерируемых колебаний в различных зонах, если известна дисперсия фазовой скорости обратной пространственной гармоники. Очевидно, что частота будет зависеть от номера зоны n, а в выбранной зоне от v0, т. е. от ускоряющего напряжения U0. Зависимость частоты генерируемых колебаний от ускоряющего напряжения называют электронной перестройкой частоты. Например, с увеличением U0 возрастает скорость электронов v0 и для выполнения условия (4.44) необходимо увеличение vфp. Так как дисперсия фазовой скорости обратных пространственных гармоник аномальная, то увеличение vфp может произойти только в результате возрастания частоты ω генерируемых колебаний. Другими словами, увеличение U0 должно сопровождаться ростом частоты колебаний.

Для нулевой зоны (n=0) на основании (4.43) можно сделать более конкретные выводы, если предположить, что сдвиги фазы ωl/vфр и ωl/v0 значительно больше π. В этом случае для выполнения фазового условия (4.43) требуется, чтобы скорость электронов v0 была немного больше фазовой скорости vфр, т. е. необходимо выполнение условия синхронизма, обеспечивающее передачу энергии от электронного потока бегущей волне. Поэтому частоту генерируемых колебаний в зоне п=0 при сделанном предположении можно определить из условия синхронизма, считая, что v0 vфp

Мы уже отмечали, что при большом токе пучка возможно одновременное

79

Рис. 4.22

существование колебаний двух зон: п=0 и n=1. Но из фазового условия (4.44) следует, что частоты этих колебаний различны. Такой двухчастотный режим работы недопустим, поэтому необходимо принимать меры для устранения колебаний в зоне n=1. Для этого ток пучка устанавливают больше пускового тока нулевой зоны, но меньше пускового тока первой зоны.

Ширина диапазона электронной перестройки характеризуется коэффициентом перекрытия диапазона δп=fмакс/fмин, где fмакс, fмин – максимальная и минимальная граничные частоты диапазона. Для ЛОВ с коаксиальным выводом энергии обычно δп=2, а с волноводным выводом определяется полосой пропускания стандартного волноводного тракта и равен δп=1,5–1,6.

Для характеристики зависимости частоты от напряжения используют крутизну электронной перестройки частоты Sэпч=df/dU. Примерная зависимость частоты от напряжения показана на рис. 4.22,а (кривая 1). Крутизна электронной перестройки частоты уменьшается с ростом U0. Для ЛОВ сантиметрового диапазона крутизна не больше нескольких мегагерц на вольт, а для миллиметрового – десятки мегагерц на вольт. В действительности кривая электронной перестройки частоты имеет “волнистый” характер (кривая 2). Объясняется это влиянием отражений энергии от поглотителя замедляющей системы и от элементов системы вывода энергии и внешнего тракта.

Выходная мощность и электронный КПД. В ЛОВО электронный поток имеет максимальную модуляцию по плотности (наибольшую амплитуду первой гармоники конвекционного тока на рис. 4.18,б) в той части замедляющей системы, где СВЧ-поле (Ez) мало в отличие от ЛБВО, в которой I(1) и Еz. увеличиваются к выходному концу замедляющей системы (см. рис. 4,7,6). Поэтому в ЛОВО мощность, отбираемая полем от электронного потока и зависящая от произведения I(1) и Еz, невелика и составляет от нескольких десятков милливатт до нескольких ватт, как у отражательных клистронов. Соответственно электронный КПД ЛОВО низок.

Выходную мощность генераторной ЛОВ определяют по формуле Pвых=kU0(I0–I0(пуск)),

где I0 – ток пучка; I0(пуск) – пусковой ток, при котором начинается генерация; k — коэффициент, зависящий от параметра усиления (4.28) и электрической длины N (4.38).

Оказывается, что величина I0(пуск) пропорциональна напряжению U0. Поэтому зависимость

Рвых от U0 имеет вид сплошной кривой 1 на рис. 4.22,б. Сначала Рвых растет, так как увеличивается подводимая к ЛОВ мощность постоянного тока P0=I0U0, а затем в связи с

увеличением I0(пуск) рост Рвых замедляется, возможно наступление насыщения и даже спада.

На рис. 4.22,б пунктирной кривой 2 показано изменение Рвых в реальных условиях, когда часть мощности отражается от поглотителя замедляющей системы и от системы вывода энергии в нагрузку.

Рис. 4.24

80

§4.9. Особенности устройства и применения ЛОВО

ВЛОВО в качестве рабочей пространственной гармоники используется нулевая, если она обратная, или гармоника с номером р=–1. ЛОВО широко используют как маломощные генераторы в дециметровом, сантиметровом, миллиметровом и даже субмиллиметровом диапазонах волн. В ЛОВО применяют системы с двойной спиралью

Рис. 4.23

(см. рис. 4.3,ж), системы встречных штырей (см. рис. 4.3,г) и др.

Как уже отмечалось, выходная мощность ЛОВО составляет от нескольких десятков милливатт до нескольких ватт, а КПД—порядка нескольких процентов. Конструкция системы фокусировки пучка, вывода СВЧ-энергии в ЛОВО имеет много общего с маломощными ЛБВО.

В табл. 4 приведены электрические параметры ЛОВО, работающих в различных диапазонах частот.

На рис. 4.23 показана генераторная ЛОВ без поглотителя, в которой замедляющая система на одном конце короткозамкнута и создает полное отражение. На другом конце замедляющей системы перед нагрузкой установлена диафрагма Д, частично отражающая энергию. Такие ЛОВ называются резонансными, так как замедляющая система,

ограниченная короткозамыкателем и диафрагмой, является резонатором. В рабочем диапазоне перестройки ЛОВ имеется несколько резонансных частот, для которых крутизна электронной перестройки будет минимальной. Чем выше добротность резонатора, тем меньше крутизна и выше стабильность частоты в фиксированных точках диапазона.

Таблица 4

Параметры маломощных ЛОВО

На рис. 4.24 показаны характеристики электронной перестройки (а) и области генерации (б) резонансной ЛОВ. В резонансных ЛОВ возможна и механическая перестройка резонансной частоты перемещением диафрагмы. Резонансные ЛОВ имеют значительно меньший пусковой ток и больший электронный КПД, чем обычные ЛОВО с тем же рабочим током пучка.

Соседние файлы в папке СВЧ