Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СВЧ / Приборы СВЧ Федоров.pdf
Скачиваний:
426
Добавлен:
10.02.2015
Размер:
4.34 Mб
Скачать

232

§ 15.8. Жидкостные лазеры

Жидкостным называют лазер с жидкостным активным элементом в виде растворов неорганических соединений редкоземельных элементов или растворов органических красителей.

Вжидкостных лазерах можно обеспечить примерно такую же концентрацию активных частиц, как в твердотельных и, следовательно, получить высокий энергосъем с единицы объема активной среды. Кроме того, из-за большой однородности жидкостной активной среды отсутствуют потери, характерные для твердотельных активных элементов. Наконец, облегчается охлаждение активной среды, оно обеспечивается циркуляцией жидкости через рабочее пространство лазера. Для жидкостных лазеров характерна повышенная устойчивость к температурным напряжениям по сравнению с твердотельными лазерами.

К недостаткам жидкостных лазеров следует отнести небольшой срок сохраняемости растворов, появление в среде «тепловой» линзы с фокусным расстоянием, меняющимся в течение импульса излучения. Первая причина приводит к значительному изменению мощности излучения, а вторая - к существенному возрастанию расходимости выходного излучения до единиц, а иногда и до десятков градусов.

Влазерах на основе неорганических соединений редкоземельных элементов используются весьма химически агрессивные жидкости, что ограничивает выбор материалов и срок их службы

Лазеры на основе неорганических сред работают только в импульсном режиме. В качестве источников накачки используют импульсные лампы. Средняя мощность излучения достигает .380 Вт, а импульсная мощность —50 МВт (в режиме модуляции добротности).

В настоящее время практическое развитие получили в основном лазеры на основе растворов солей неодима (Nd) в неорганических жидкостях, таких, как SeOCl2: SnCl, РоС13: SnCl4 и PoCl3: ZrCl4, В качестве лазерного перехода используют тот же квантовый переход иона неодима, как и в твердотельных лазерах на стекле с примесью неодима.

Лазеры на основе органических красителей работают как в импульсном, так и в непрерывном режиме. В непрерывном режиме используется только лазерная накачка, а в импульсном — лазерная и ламповая накачка. Импульсная мощность излучения достигает нескольких мегаватт. Длительность импульсов при ламповой накачке 1 — 15 мкс, а при лазерной накачке 10—30 нс. Отличительной особенностью лазеров на основе органических красителей является возможность изменения длины волны излучения в широких пределах. Объясняется это большой шириной спектральной линии излучения среды, достигающей 100 нм (0,1 мкм). Грубую перестройку можно выполнять сменой красителя, а плавную —введением в резонатор регулируемых селективных элементов, позволяющих обеспечить генерацию на любой длине волны в пределах ширины спектральной линии излучения данного раствора. Существующий набор красителей позволяет создать лазеры с перестройкой от ультрафиолетовой до ближней инфракрасной области спектра.

233

§15.9. Применения лазеров

Впредыдущих параграфах были рассмотрены принципы работы газовых, твердотельных, полупроводниковых и жидкостных лазеров и параметры, характеризующие возможности этих лазеров. Для сравнения в табл. 12 приведены сведения по некоторым серийным отечественным лазерам.

Твердотельные лазеры обеспечивают получение очень коротких импульсов излучения

сбольшой импульсной мощностью. Недостатками их являются трудность получения непрерывного режима, малый КПД, относительно небольшая частота повторения импульсов.

Газовые лазеры обладают высокой монохроматичностью и стабильностью частоты, работают как в непрерывном, так и в импульсном режиме с большей частотой повторения, имеют малый угол расходимости излучения. Недостатки газовых лазеров: малый КПД, относительно большие габариты и малая мощность (за исключением лазеров на углекислом газе и азотных лазеров). Фотография одного из лазеров (ЛГ-109) показана на

рис. 15.30.

Полупроводниковые лазеры имеют высокий КПД, малые размеры, возможность легкой модуляции до очень высоких частот. Однако они, как правило, требуют охлаждения, имеют широкий спектр излучения и большой угол расходимости. Фотография одного из

типов лазерного диода показана на рис. 15.31.

Особенности каждого типа лазеров определяют области их применения. Остановимся несколько подробнее лишь на некоторых перспективных направлениях использования лазеров.

Высокая частота несущей в оптическом диапазоне позволит получить чрезвычайно большое число каналов связи, а очень малый угол расходимости излучения лазера — высокую эффективность передачи информации. В настоящее время действуют оптические линии связи, на которых изучают все возможности этого способа связи.

Одна из серьезных трудностей при реализации систем оптической связи с помощью лазеров связана со значительным поглощением излучения в атмосфере. Поглощение зависит от метеорологических условий (дождь, туман, снегопад). Затухание на километр может достигать 10 дБ. Перспективы для атмосферных, или открытых, линий связи открывает переход в инфракрасный диапазон волн, где около λ=10,6 мкм поглощение мало («окно прозрачности» атмосферы). Сейчас имеются мощные лазеры на СО2 с такой длиной волны, но пока отсутствуют модуляторы и фотоприемные устройства, работающие в широком диапазоне частот модуляции.

Протяженность действующих открытых оптических линий связи мала, не превышает 20—25 км. На этих линиях обычно используют газовые лазеры, имеющие хорошую монохроматичность, но небольшую выходную мощность. Максимальная частота

234

235

используемых оптических модуляторов около 100 МГц. В качестве фотодетекторов применяют ФЭУ с примерно такой же полосой частот. Высокая направленность излучения газовых лазеров заставляет применять специальные системы для направления светового луча на приемное устройство.

Закрытые линии связи устраняют влияние метеоусловий. В таких линиях должны применяться световоды, обеспечивающие передачу света без значительных потерь на трассе. Возможно применение газовых световодов с фокусирующими линзами или световодов из стекловолокна. Последнее было целесообразно, так как не требуется выдерживать прямолинейность трассы. Однако даже специально разработанное стекловолокно имеет большое затухание (до 5 дБ/км), а это потребует применения промежуточных квантовых усилителей света или регенераторов сигнала, поэтому дополнительно возникает задача согласования стекловолокна с промежуточными устройствами.

Благодаря высокой направленности и большой импульсной мощности лазеры применяют для измерения очень больших расстояний. Измерения основаны на определении разности времен между фронтами исходного импульса и импульса, отраженного от объекта. Для измерения расстояния используют также фазовые методы.

Весьма перспективно применение лазеров для голографии. Схема такого применения показана на рис. 15.32. Объект освещается широким пучком лазерного излучения. Отраженный от объекта свет падает на фотографическую пластинку, на нее с помощью зеркала – направляется также свет непосредственно от лазера. В каждую точку пластинки приходит свет от всех точек объекта и от лазера, поэтому на пластинке образуется сложная интерференционная картина, которая после проявления пластинки называется голограммой. При рассмотрении такой голограммы в проходящем свете лазера можно увидеть изображение объекта, причем оно оказывается объемным. Меняя положение головы, можно увидеть изображение предметов, находящихся на переднем и заднем планах.

Получение голограммы возможно только при использовании источников света, обладающих временной и пространственной когерентностью. При отсутствии временной когерентности (монохроматичности) интерференционная картина не образуется и пластинка засвечивается равномерно. Отсутствие пространственной когерентности также приводит к исчезновению интерференционной картины.

Интересно, что восстановить (увидеть) изображение объекта можно по любой части голограммы, так как любая ее точка несет информацию обо всем объекте. Однако использование небольшой части голограммы приводит к ухудшению качества восстанавливаемого изображения,

Восстановить изображение можно и при просмотре голограммы в свете лазера с другой длиной волны, но при этом происходит изменение масштаба изображения пропорционально отношению длин волн.

Возможно получение цветного объемного изображения. Для этого необходимо снимать голограмму одновременно тремя лазерами с длинами волн, соответствующими трем основным цветам. Восстановление изображения производится в проходящем свете этих же трех источников света.

Создание мощных лазеров привело к возникновению новой области физики— нелинейной оптики, которая изучает эффекты, зависящие от интенсивности светового излучения.

236

Использование эффектов нелинейной оптики позволяет создать лазеры с параметрическим возбуждением и с плавно перестраиваемой частотой. Уже разработаны параметрические лазеры, в которых частота плавно изменяется от видимого до далекого инфракрасного диапазона (0,65—2,5 мкм). Параметрический принцип возбуждения позволяет также осуществить генерацию гармоник.

Необходимо отметить использование лазеров в научных исследованиях, например, при измерениях плотности плазмы и распределения концентрации электронов в плазме. Излучение мощных лазеров используется в физико-химических исследованиях. Под воздействием излучения происходит разрушение химических связей. Возможно создание разрядов в воздухе и других газах. Лазеры применяют в медицине при некоторых операциях; широко используют в технологических процессах. Применение лазеров в логических элементах может привести к созданию сверхбыстродействующих ЭВМ.

В настоящее время проводят исследования по использованию лазеров большой мощности для получения термоядерных реакций, Предполагают, что с помощью пучков большого числа мощных лазеров, направленных на мишень, состоящую из смеси изотопов дейтерия и трития размерами порядка 1 мм, удастся нагреть ее до температуры 100 млн. градусов, при которой начнется термоядерный синтез. Процесс нагрева должен проходить настолько быстро, чтобы мишень не успела заметно расшириться. В качестве мощных лазеров предполагают использовать импульсные лазеры на неодимовом стекле и на углекислом газе.

239

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Дулин В.Н. Электронные приборы. Изд. 3-е. М., «Энергия», 1977.

Лебедев И.В. Техника и приборы сверхвысоких частот. Т. I. Изд. 2-е. М., «Высшая школа», 1970.

Лебедев И.В. Техника и приборы сверхвысоких частот. Т. II. Изд. 2-е. М., «Высшая школа», 1970.

Кацман Ю.А. Приборы сверхвысоких частот. Т. II. М., «Высшая школа», 1973.

Гайдук В.И., Палатов К.И., Петров Д.М. Физические основы электроники сверхвысоких частот. М., «Советское радио», 1971.

Стальмахов В.С. Основы электроники сверхвысокочастотных приборов со скрещенными полями. М., «Советское радио», 1963.

Кац А.М., Ильина Е.М., Манькин И.А. Нелинейные явления в СВЧ-приборах О-типа с длительным взаимодействием. М., «Советское радио», 1975.

Уманский В.С. Усилительный тракт импульсных передающих устройств СВЧ. М., «Советское радио», 1973.

Голант М.Б., Бобровский Ю.Л. Генераторы СВЧ малой мощности. Вопросы оптимизации параметров. М., «Советское радио», 1977.

Полупроводниковые входные устройства СВЧ. Под ред. В.С. Эткина. Т. I. Общие вопросы теории. Туннельные и транзисторные усилители и детекторы СВЧ. М., «Советское радио», 1975.

Тагер А.С., Вальд-Перлов В.М. Лавинно-пролетные диоды и их применение в технике СВЧ. М., «Советское радио», 1968.

Левинштейн М.Е., Пожела Ю.К., Шур М.С. Эффект Ганна. М., «Советское радио», 1975.

СВЧ-полупроводниковые приборы и их применение. Под ред. Г. Уотсона. Пер. с англ.

М., «Мир», 1972.

Кэролл Дж. СВЧ-генераторы на горячих электронах. Пер. с англ. М., «Мир», 1972.

Валитов Р.А., Дюбко С.В., Камышан В.В. и др. Техника субмиллиметровых волн. М., «Советское радио», 1969.

Страховский Г.М., Успенский А.В. Основы квантовой электроники. М., «Высшая школа», 1973.

Тарасов Л.В. Физические основы квантовой электроники (оптический диапазон). М., «Советское радио», 1976.

Штейншлейгер В.Б., Мисежников Г.С., Лифанов П.С. Квантовые усилители СВЧ

(мазеры). Под ред. В.Б.Штейншлейгера. М., «Советское радио», 1971.

Григорянц В.В., Жаботинский М.Е., Золин В.Ф. Квантовые стандарты частоты. М., «Наука», 1968.

Ищенко Е.Ф., Климков Ю.М. Оптические квантовые генераторы. М., «Советское радио», 1968.

Елецкий А.В., Смирнов Б.М. Газовые лазеры. М., Атомиздат, 1971.

Микаэлян А.М., Тер-Микаэлян М.Л., Турхов Ю.П. Оптические квантовые генераторы на твердом теле. М., «Советское радио», 1968.

Рябов С.Г., Торопкин Г.Н., Усольцев И.Ф. Приборы квантовой электроники.

Характеристики, применение, тенденции развития, М., «Советское радио», 1976. Дьяков В.А., Тарасов Л.В. Оптическое когерентное излучение. М., «Советское радио», 1974.

Смирнов В.А. Введение в оптическую радиоэлектронику. М., «Советское радио», 1973.

240

Квантовая электроника. Маленькая энциклопедия. Под ред. С.А. Ахманова и др. М., «Советская энциклопедия», 1969.

Белостоцкий Б.Р., Любавский Ю.В., Овчинников В.М. Основы лазерной техники.

Твердотельные ОКГ. М., «Советское радио», 1976, с. 408.

Соседние файлы в папке СВЧ