Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СВЧ / Приборы СВЧ Федоров.pdf
Скачиваний:
425
Добавлен:
10.02.2015
Размер:
4.34 Mб
Скачать

58

§4.2. Замедляющие системы

Втехнике СВЧ получили распространение замедляющие системы, основанные на использовании линий передачи с периодически изменяющимся сечением (профилем) или

спериодически повторяющимися неоднородностями. В этих системах имеется продольная составляющая поля Е и происходит замедление волны.

Для характеристики замедляющих систем используется коэффициент замедления,

показывающий, во сколько раз скорость света больше фазовой скорости волны

Кзам = с/ vф

(4.4)

Разновидности замедляющих систем. На рис.

4.3 показаны некоторые разновидности замедляющих систем: спиральная а, цилиндрический диафрагмированный волновод б, коаксиальный кабель с гофрированным центральным электродом в, система встречных штырей г, гребенка д, цепочка связанных резонаторов е, двойная спираль ж, спираль с внутренним электродом з.

В маломощных ЛБВ наиболее широко используется спиральная замедляющая система (см. рис. 4.3,а). Замедление волн в спиральной линии объясняется наглядно. Волна распространяется вдоль провода спирали с фазовой

скоростью vфl, равной скорости света с. Фазовая скорость волны по направлению z (оси спирали) меньше и равна проекции скорости на это направление, т. е.

(4.5)

где α—угол наклона витков спирали, зависящий от диаметра витков D и шага L (период спирали). Если шаг спирали мал (L< <πD), то cosα L/πD. Тогда из (4.5) при vфl=с получим

(4.6)

Для спиральной замедляющей системы с учетом (4.4) Кзам πD/L. Замедление волны увеличивается с ростом диаметра витков и уменьшением шага спирали.

Рис. 4.4

59

Поле в периодических замедляющих системах и пространственные гармоники.

Рассмотрим бесконечно протяженную замедляющую систему, изображенную на рис. 4.4,а. В линии передачи бесконечной длины должна существовать бегущая волна; предположим, что волна распространяется вправо.

На рис. 4.4,а показана картина силовых линий электрического поля для некоторого момента времени вблизи выступов гребенчатой замедляющей системы (при удалении от выступов картина поля может оказаться более сложной из-за влияния соседних выступов). Картина силовых линий во всех ячейках, определяемых пространственным периодом L, подобна, но напряженность поля в них неодинакова, как во всякой бегущей волне. На рис. 4.4,а рост напряженности поля отмечен увеличением числа силовых линий между выступами.

В общем случае поле в замедляющей системе зависит от координат x, у, z и времени t. Для анализа процесса взаимодействия электронов с полем необходимо знать изменение составляющей поля Еz, совпадающей с направлением движения электронов. Предположим, что пучок электронов бесконечно тонкий и находится на расстоянии h от нижнего (плоского) электрода. В этом случае требуется выяснить, как зависит Еz от z при y=h.

Очевидно, что в точках 1, 2, 3 и т. д., находящихся под серединой выступов, Еz =0, так как в этих точках силовая линия перпендикулярна оси z. В каждой ячейке поле Еz максимально в середине ячейки, где Еy =0. Таким образом, зависимость Еz. от координаты z в моменты времени t' и t">t' имеет вид, показанный на рис. 4.4,б. Зависимость несинусоидальная, а смещение огибающей вправо соответствует выбранному направлению распространения поля.

Строгое рассмотрение поля в периодических замедляющих системах должно основываться на решении уравнений Максвелла при выполнении граничных условий на поверхности электродов, профиль которых периодически изменяется (периодические граничные условия). Частное решение уравнений Максвелла в периодических замедляющих системах для амплитуды продольной составляющей напряженности электрического поля Еz, имеет вид

(4.7)

где Еz(х, у', z)—периодическая по координате z функция с периодом, равным периоду замедляющей системы L, а β0 —некоторое волновое число.

Сравним амплитудные значения поля Еz в симметричных точках замедляющей системы, т. е. в точках, отстоящих друг от друга на величину периода L. Из (4.7) следует, что

(4.8)

Вследствие периодичности функции Еz

(4.9)

Используя (4.7) и (4.9), можно привести (4.8) к виду

(4.10)

Таким образом, амплитуда поля в любом поперечном сечении замедляющей системы отличается от амплитуды поля в другом сечении, смещенном на период, лишь комплексной постоянной exp(–jβ0L). Этот вывод называют теоремой Флоке для периодических систем.

Вернемся к уравнению (4.7). Периодическую функцию Ez (x, y, z) можно разложить в

ряд Фурье по координате z. При записи в комплексном виде эта функция представляется рядом

60

(4.11)

где р—целые числа (0, ±1, ±2 ...), а

(4.12)

— коэффициенты разложения в ряд.

Подставляя (4.11) в (4.7), получаем зависимость амплитуды поля от координат

(4.13)

где

(4.14)

Чтобы учесть гармоническое изменение поля во времени, необходимо выражения (4.7) и (4.13) дополнить сомножителе exp(jωt). Тогда

(4.15)

Следовательно, поле в периодической замедляющей системе можно представить бесконечной суммой бегущих волн с одинаковой частотой ω и различающихся коэффициентами фазы βp и амплитудами Еzp. Эти волны появились в результате разложения функции Ez(x, у, z) в ряд по пространственной координате, поэтому их называют пространственными гармониками. Их не следует смешивать с временными гармониками, которые получаются при разложении в ряд несинусоидальных периодических функций времени и имеют кратные частоты. Все пространственные гармоники изменяются во времени с частотой входного сигнала, а появление различных коэффициентов фазы – это результат несинусоидальной зависимости поля Ez от координаты z.

Пространственные гармоники существуют только совместно, в сумме представляя реальное поле в замедляющей системе с периодическим изменением профиля или границ электродов. Решение в виде одной пространственной гармоники (одной бегущей волны) не может удовлетворить граничным условиям.

Параметры пространственных гармоник. Пространственные гармоники в соответствии с (4.14) имеют различные коэффициенты фазы βp. Гармоника р=0 называется нулевой пространственной гармоникой, р=+1 плюс первой, р= 1 – минус первой и т. д. Гармоники с номером р>0 называются положительными, а с р<0 – отрицательными. Величина β0 – коэффициент фазы нулевой пространственной гармоники.

Выражение (4.14) можно преобразовать к виду

(4.16)

где ϕ0=β0L – сдвиг фазы на один период L для нулевой пространственной гармоники, а ϕp=ϕ0+2πp – сдвиг фазы для гармоники р.

Длина волны гармоники

(4.17)

61

Фазовая скорость пространственной гармоники

(4.18)

Таким образом, пространственные гармоники, обладают различными фазовыми скоростями. Нулевая гармоника (р=0) имеет скорость

(4.19)

где λв0 – длина волны в замедляющей системе нулевой гармоники. Важно отметить, что в периодических замедляющих системах и нулевая пространственная гармоника имеет фазовую скорость меньшую, чем в системе без периодического изменения профиль, т. е. также оказывается замедленной.

Сравним величины фазовых скоростей пространственных гармоник по формуле (4.18). Для определенности предположим, что β0>0, т. е. фазовая скорость нулевой гармоники vф0 направлена по оси z. Если при этом длина волны в замедляющей системе λв0 для нулевой гармоники больше периода L

(4.20)

то для положительных р(+1, +2 и т. д.) vфp>0, т. е. фазовая скорость направлена также вдоль оси z, а величина скорости по формуле (4.18) будет уменьшаться с ростом номера гармоники р. При отрицательных номерах р(—1, —2 и т. д.) vфp<0, т. е. направление фазовой скорости изменилось на обратное. Абсолютная величина vфp при р<0 также уменьшается с ростом номера гармоники. Таким образом, при выполнении условия (4.20) максимальное значение фазовой скорости соответствует нулевой пространственной гармонике. Часто пространственную гармонику, имеющую наибольшую фазовую скорость, называют основной. В нашем случае основной оказывается нулевая пространственная гармоника. В некоторых вариантах конструкции замедляющей системы основной пространственной гармоникой может оказаться гармоника с номером р= –1.

Сравним пространственные гармоники по величине групповой скорости, которая характеризует скорость переноса энергии:

(4.21)

Используя выражение (4.16), получаем

(4.22)

т. е. групповая скорость всех пространственных гармоник одинакова и равна групповой скорости нулевой гармоники vг и номер гармоники можно не писать. Это еще раз показывает, что пространственные гармоники существуют совместно и понятие групповой скорости нельзя отнести только к одной из них.

Поскольку величина и направление групповой скорости одинаковы для всех гармоник, удобно считать групповую скорость всегда положительной и сравнивать с ней фазовые скорости гармоник. Фазовую скорость гармоники будем считать положительной, если ее

направление совпадает с направлением групповой скорости (т. е. с направлением от генератора к нагрузке), и отрицательной – при противоположном направлении.

62

Волну, в которой направления групповой и фазовой скоростей одинаковы, называют прямой волной, волну с противоположными направлениями скоростей – обратной волной. Соответственно и пространственные гармоники можно разделить на прямые и обратные. Все гармоники с отрицательными номерами (р<0) обратные, а с положительными (р>0)

– прямые. Нулевая гармоника (р=0) может быть прямой (vф0>0) и обратной (vф0<0). Используя (4.18) и (4.21), установим связь групповой и фазовой скоростей:

(4.23)

В замедляющей системе, как в любой линии передачи, фазовая и групповая скорости зависят от частоты. Эти зависимости называются дисперсионными характеристиками системы, или дисперсией. Дисперсию называют нормальной, если абсолютное значение фазовой скорости уменьшается с ростом частоты, т. е.

(4.24)

При

(4.25)

дисперсия фазовой скорости аномальная. Дисперсия отрицательных пространственных гармоник (р<0), или обратных, всегда аномальная, а положительных (р>0), или прямых, может быть аномальной и нормальной. Характер дисперсии нулевой гармоники (р=0) зависит от того, прямая она или обратная. Если нулевая гармоника прямая, то дисперсия может быть любой и определяется конкретным типом замедляющей системы. Если нулевая гармоника обратная, то независимо от типа замедляющей системы дисперсия аномальная.

Необходимо отметить, что если известна зависимость фазовой скорости нулевой гармоники от частоты vф0(ω), то можно определить зависимость от частоты фазовой скорости любой пространственной гармоники по формуле (4.18), которую удобнее для этой цели преобразовать к виду

(4.26)

Замедляющие системы – это линии передачи с периодически повторяющимися неоднородностями. Обычно их представляют в виде эквивалентных схем с сосредоточенными параметрами – емкостями и индуктивностями. Такая схема обладает свойствами фильтров. Каждый период замедляющей системы на эквивалентной схеме представляется звеном фильтра с реактивными сопротивлениями X1, и Х2 (рис. 4.5). В зависимости от конструкции замедляющей системы звено фильтра может быть фильтром

низших частот (X1 индуктивность, Х2 емкость),

фильтром высших частот (X1 – емкость, Х2

индуктивность) или полосовым фильтром, если X1 или Х2 реактивные сопротивления резонансного контура. Полосу пропускания эквивалентной схемы определяют из теории фильтров частотами ω0 и ωπ, на которых сдвиг фазы ϕ0 на одно звено равен нулю

Рис. 4.5

и 180°.

Параметры эквивалентной схемы выбраны так,

 

чтобы сдвиг фазы на одно звено ϕ0 равнялся изменению фазы нулевой пространственной

63

гармоники на одном периоде замедляющей системы, т. е. ϕ0=β0L. Другими словами, представление замедляющей системы эквивалентной схемой справедливо только для нулевой пространственной гармоники. По эквивалентной схеме можно выяснить дисперсию нулевой гармоники, а затем, используя формулу (4.26), также и дисперсию других пространственных гармоник.

Зависимость фазовой скорости гармоник от частоты можно проследить с помощью дисперсионных характеристик, одна из разновидностей которых показана на рис. 4.6. По оси абсцисс отложен фазовый сдвиг на один период замедляющей системы ϕp=βpL, определяемый формулой (4.16), а по оси ординат – частота ω. Сплошные кривые относятся к гармоникам р=0, ±1, ±2. Нулевая гармоника (р=0) соответствует изменению угла ϕp=ϕ0=β0L от 0 до π. Эти пределы в соответствии с теорией фильтров определяют полосу пропускания, заключенную между ω0 и ωπ,. Сдвиг фазы для гармоники р=+1 по определению (4.16) на 2π больше, чем при р=0, поэтому кривая для р=+1 существует в пределах от 2π до Зπ. Соответственно смещаются на 2π вправо кривые при каждом увеличении на единицу номера р. Переход от р=0 к р= 1 эквивалентен смещению кривой в область значений фазы от –π до –2π и т. п. Полоса пропускания для всех пространственных гармоник одинакова и равна полосе пропускания эквивалентной схемы и замедляющей системы.

Фазовая скорость гармоники с учетом (4.18) пропорциональна тангенсу угла наклона ψ прямой, проведенной через начало координат и точку дисперсионной характеристики при

Рис. 4.6

выбранной частоте ω. Групповая скорость гармоники по формуле (4.21) пропорциональна производной в данной точке. Очевидно, что на границах полосы пропускания групповая скорость гармоник равна нулю (экстремальные точки кривых).

Групповая скорость всех пространственных гармоник при данной частоте ω одинакова и положительна. Для варианта замедляющей системы, дисперсионная характеристика которой приведена на рис. 4.6, наибольшая фазовая скорость у нулевой гармоники. С увеличением положительного номера р фазовая скорость уменьшается, фазовые скорости отрицательных гармоник отрицательны (противоположны направлению групповой скорости) и также уменьшаются с ростом номера. В рассматриваемом случае гармоники р=0, +1, +2 – прямые, а р=–1, –2 – обратные. Используя дисперсионные характеристики, можно выяснить зависимость фазовой скорости любой пространственной гармоники от частоты.

Соседние файлы в папке СВЧ