Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700431.doc
Скачиваний:
13
Добавлен:
01.05.2022
Размер:
6.57 Mб
Скачать

Решение

Частично поляризованный свет можно рассмат­ривать как смесь плоскополяризованного и естественного света. Ни­коль всегда пропускает половину падающего на него естественного света (превращая его в плоскополяризованный). Степень пропускания поляризованного света, падающего на николь, зависит, согласно за­кону Малюса

от взаимной ориентации главных плоскостей поля­ризатора и анализатора. Поэтому полная интенсивность света, про­шедшего через николь,

I = 0,5In + Ip cos2 φ,

где In, Ip - интенсивности естественной и поляризованной состав­ляющих света, падающего на николь.

Степень поляризации света

,

где Iмакс = 0,5In + Ip, Iмин = 0,5In.

По условию, Iмакс = kI, или,

Iмакс =k [ Iмин + (Iмакс - Iмин) cos2 φ.

Обозначим через отношение Iмакс / Iмин, тогда

P = (1- )/ (1+);

1 = k [ + (1 - ) cos2];

5.6. Задачи для контрольных заданий

5.01. На пленку с показателем преломления n = 1,4 под некоторым углом падает белый свет. Толщина пленки b = 2,8.10-1 мм. При каком наименьшем угле падения пленка будет казаться красной в проходящем свете?

5.02. Белый свет, падающий на мыльную пленку нормально (n = 1,33) и отраженный от нее, дает в видимом спектре интерференционный максимум на волне длиной 6300 A0 и соседний минимум на волне 4500 A0. Какова толщина пленки, если считать ее постоянной?

5.03. Две пластинки из стекла образуют воздушный клин с углом ”. Свет падает нормально (м). Во сколько раз нужно увеличить угол клина, чтобы число темных интерференционных полос на единицу длины увеличилось в 1,3 раза. Наблюдение проводится в отраженном свете.

5.04. Свет с длиной волны ,мкм падает на поверхность стеклянного клина. В отраженном свете наблюдают систему интерференционных полос, расстояние между соседними максимумами которых на поверхности клина х = 0.21 мм. Найти угол между гранями клина.

5.05. Мыльная пленка, расположенная вертикально, образует клин вследствие стекания жидкости. При наблюдении интерференционных полос в отраженном свете (‑м оказалось, что расстояние между полосами l = 20 мм. Угол клина = 11”. Найти показатель преломления мыльной воды. Свет падает нормально.

5.06. На установку для получения колец Ньютона падает нормально монохроматический свет ( = 5.10-7 м). Определить толщину воздушного слоя там, где наблюдается пятое кольцо.

5.07. Плосковыпуклая стеклянная линза с радиусом кривизны R = 12,5 м прижата к стеклянной пластине. Диаметры десятого и пятнадцатого темных колец Ньютона в отраженном свете равны d1=1 мм, d2=1,5 мм. Определить длину волны света.

5.08. На щель шириной 2.10-6 м падает нормально парал- лельный пучок монохроматического света с длиной волны = 5.10-7 м. Найти ширину изображений щели на экране, удаленном от щели на l = 1 м. Шириной изображения считать расстояние между первыми дифракционными минимумами, расположенными по обе стороны от главного максимума освещенности.

5.09. На узкую щель падает нормально монохромати- ческий свет. Угол наклонения пучков света, соответствующих второй светлой дифракционной полосе, равен 1Скольким длинам волн падающего света равна ширина щели?

5.10. Чему равна постоянная дифракционной решетки, если для того, чтобы увидеть красную линию ( = 0,7.10-7 м) в спектре третьего порядка, зрительную трубу пришлось установить под углом ’ к оси коллиматора? Какое число штрихов нанесено на 1 см длины этой решетки? Свет падает на решетку нормально.

5.11. Определить число штрихов на 1 см дифракционной решетки, если при нормальном падении света с длиной волны = 6.10-7 м решетка дает первый максимум на расстоянии l = 3,3 см от центрального. Расстояние от решетки до экрана L = 1,1 м.

5.12. Какое наименьшее число штрихов должна содержать решетка, чтобы в спектре первого порядка можно было разделить две желтые линии натрия с длинами волн  = 5,89.10-7 м и = 5,896.10-7 м? Какова длина такой решетки, если постоянная решетки d = 10 мкм?

5.13. Свет с длиной волны = 5,35.10-7 м падает нормально на дифракционную решетку с периодом d = 3,5 мкм, содержащую N = 1000 штрихов. Найти угловую ширину дифракционного максимума второго порядка.

5.14. На каком расстоянии друг от друга будут находиться на экране две линии ртутной дуги ( = 577 нм и = 579 нм) в спектре первого порядка, полученные при помощи дифракционной решетки с периодом 2.10-6 м? Фокусное расстояние линзы, проектирующей спектр на экран, равно 0,6 м.

5.15. Угол между плоскостями пропускания поляризатора и анализатора равен 30. Во сколько раз уменьшится интенсивность света, выходящего из анализатора, если угол увеличить до 60

5.16. Естественный свет проходит через поляризатор и анализатор. Поляризатор поглощает и отражает 12 % падающего на него света, анализатор – 10 % . Оказалось, что интенсивность луча, вышедшего из анализатора, в 10 раз меньше интенсивности естественного света. Найти угол между плоскостями пропускания поляризатора и анализатора.

5.17. Два николя расположены так, что угол между их плоскостями пропускания равен . Потери на поглощение составляют 10 % в каждом николе. Определить, во сколько раз уменьшится интенсивность света при прохождении через оба николя?

5.18. На пути частично поляризованного света, степень поляризации Р которого равна 0,6 поставили анализатор так, что интенсивность света, прошедшего через него, стала максимальной. Во сколько раз уменьшится интенсивность света, если плоскость пропускания анализатора повернуть на угол ?

5.19. На николь падает пучок частично поляризованного света. При некотором положении николя интенсивность света, прошедшего через него, стала минимальной. Когда плоскость пропускания николя повернули на угол , интенсивность света возросла в k = 1,5 раза. Определить степень поляризации Р света.

5.20. Найти показатель преломления n стекла, если при отражении от него света отраженный луч будет полностью поляризован при угле преломления = 30.