
- •Физико-химия и технология полимеров, полимерных композитов
- •Введение
- •ГлаВа 1. Основные определения и понятия высокомолекулярных соединений
- •Номенклатура полимеров
- •Классификация вмс
- •Сополимеры
- •Основные отличия вмс от низкомолекулярных соединений
- •Значение вмс в природе, технике, технологии
- •Вопросы для самоподготовки
- •Глава 2. Методы получения полимеров
- •Синтез полимеров реакцией цепной полимеризации
- •Мономеры реакции полимеризации
- •Радикальная полимеризация
- •Кинетические закономерности
- •Регуляторы и ингибиторы
- •Влияние различных факторов на процесс радикальной полимеризации
- •Ионная полимеризация
- •Катионная полимеризация (кп)
- •Катализаторы катионной полимеризации. Сокатализаторы
- •Механизм и кинетика катионной полимеризации
- •Факторы, влияющие на процесс катионной полимеризации
- •Анионная полимеризация
- •Механизм и кинетика анионной полимеризации
- •Анионно-координационная полимеризация
- •Полимеризация полиеновых соединений
- •Полимеризация с раскрытием цикла
- •Ступенчатая полимеризация
- •Поликонденсация
- •Факторы, влияющие на процесс поликонденсации
- •Способы проведения полимеризации и поликонденсации
- •Вопросы для самоподготовки
- •Глава 3. Физико-Механические свойства полимеров
- •Гибкость цепи полимеров
- •Термодинамическая и кинетическая гибкость
- •Параметры, определяющие гибкость цепи
- •Факторы, влияющие на термодинамическую гибкость цепи
- •Факторы, влияющие на кинетическую гибкость цепи
- •Физические состояния полимеров
- •Вопросы для самоподготовки
- •Глава 4. Растворы высокомолекулярных соединений
- •Сравнительные особенности золей и растворов высокомолекулярных соединений
- •Термодинамика растворения вмс
- •Набухание вмс
- •Свойства растворов вмс
- •Вязкость растворов вмс
- •Изоэлектрическая точка полиамфолитов
- •Мембранное равновесие
- •Устойчивость растворов вмс
- •Коллоидная защита
- •Пластификация и применение растворов вмс
- •Вопросы для самоподготовки
- •Глава 5. Химические превращения полимеров
- •Особенности химических реакций полимеров
- •Полимераналогичные превращения
- •Макромолекулярные реакции
- •Реакции концевых групп
- •Реакции деструкции
- •Химическая деструкция полимеров
- •Физическая деструкция полимеров
- •Добавки, снижающие скорость старения полимеров
- •Вопросы для самоподготовки
- •Глава 6. Композиционные материалы
- •Факторы, влияющие на процессы образования и свойства композиционных материалов
- •Совместимость компонентов композита
- •Переработка полимерных материалов
- •Некоторые представители композиционных материалов, применяемых в строительстве
- •Понятие адгезии, работа адгезии
- •Теории адгезии
- •Пленкообразующие и лакокрасочные материалы
- •Вопросы для самоподготовки
- •Лабораторные работы
- •Синтез высокомолекулярных соединений
- •Экспериментальная часть Получение полимеров методом полимеризации
- •Получение полимеров методом поликонденсации
- •Контрольные вопросы и упражнения
- •Физико-механические свойства полимеров
- •Массы полимеров
- •Экспериментальная часть
- •Контрольные вопросы и упражнения
- •Экспериментальная часть
- •Контрольные вопросы и упражнения
- •Экспериментальная часть
- •Контрольные вопросы и упражнения
- •Химические превращения полимеров
- •Экспериментальная часть Полимераналогичные превращения или реакции звеньев цепи
- •Макрореакции полимеров
- •Контрольные вопросы и упражнения
- •Научно-исследовательская работа
- •Темы рефератов
- •План и порядок оформления рефератов
- •Темы нир по полимерным композиционным материалам
- •Примерный развернутый план проведения исследований
- •Итоговое тестирование
- •Словарь терминов (глоссарий)
- •Библиографический список рекомендуемой литературы Основная литература
- •Дополнительная литература
- •Оглавление
- •3 94006 Воронеж, ул. 20-лет Октября, 84
Термодинамика растворения вмс
Растворение ВМС принято рассматривать как процесс смешения двух жидкостей. Аналогия между растворением высокомолекулярного вещества и смешением двух жидкостей не является формальной, а отвечает самому существу явления. Так, ограниченное набухание высокомолекулярного вещества соответствует процессу ограниченного смешения, а неограниченное набухание, переходящее в растворение, − процессу неограниченного смешения.
Самопроизвольное растворение ВМС при постоянном давлении должно сопровождаться уменьшением изобарно-изотермического потенциала (свободной энергии при постоянном давлении). Согласно второму закону термодинамики изменение изобарно-изотермического потенциала системы
ΔG = ΔН – TΔS. (4.1)
Для того чтобы произошло самопроизвольное растворение полимера, ΔG должно иметь отрицательное значение (ΔG < 0).
Изменение энтальпии при растворении (или внутренней энергии) равно интегральной теплоте растворения с обратным знаком. При растворении полярных полимеров в полярных растворителях ∆Н < 0. Положительный тепловой эффект при растворении объясняется тем, что теплота сольватации макромолекул больше теплоты собственно растворения, а, как известно, общий тепловой эффект растворения равен алгебраической сумме теплот сольватации и собственно растворения.
Энтропия смешения всегда положительна (ΔS > 0). Энтропия смешения ВМС с растворителем, рассчитанная на массовую долю вещества, лежит между значениями энтропии растворения низкомолекулярных веществ и типичных коллоидных систем. Поэтому относительная роль энтропийного фактора при растворении ВМС меньше, чем при растворении низкомолекулярных веществ, а энтальпийный фактор (сольватация) имеет относительно большое значение.
Вместе с тем, в некоторых случаях энтропийный член может иметь большие значения и некоторые полимеры способны растворяться с поглощением, а не с выделением теплоты, т.е. при ΔН > 0. Это обусловлено тем, что в таких случаях TΔS > ΔН и, следовательно, ΔG < 0. При повышении температуры значение энтропийного фактора возрастает. Таким образом, для всякого ВМС и растворителя должна существовать критическая температура растворения Tкрит., выше которой наблюдается их смешение во всех отношениях. Теоретически такая критическая температура должна существовать для любой комбинации. Например, до 55 °С ацетилцеллюлоза ограниченно растворяется в хлороформе, и раствор расслаивается на две фазы. Выше 55 °С наблюдается неограниченная растворимость, т.е. к растворам ВМС, как и к растворам низкомолекулярных веществ, применимо правило фаз (работы В.А. Каргина). К золям оно неприменимо, так как они относятся к неравновесным системам.
Еще 70 лет тому назад существовали две теории растворов полимеров. Согласно одной из них (мицеллярная теория, развитая Майером и Марком), макромолекулы находятся в растворе в виде мицелл (молекулярный агломерат, защищенный двойным электрическим слоем ионов и противоионов), согласно второй – достаточно разбавленные растворы ВМС содержат отдельные, не связанные друг с другом молекулы (молекулярная теория). В настоящее время мицеллярная теория потеряла свое значение. Как показали исследования, ВМС в подходящих растворителях самопроизвольно диспергируются до отдельных молекул. Молекулярная теория находит подтверждение в ряде фактов:
а) определение молекулярных масс в разбавленных растворах полимеров однозначно показало отсутствие в таких растворах мицелл;
б) растворение высокомолекулярного вещества, как и растворение низкомолекулярного, идет самопроизвольно, часто с выделением теплоты. При диспергировании же вещества до коллоидного состояния требуется затрата энергии на преодоление межмолекулярных сил.
в) растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться достаточно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы. Растворение полимеров не требует присутствия в системе стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость.
Это все относится к разбавленным растворам ВМС. В концентрированных растворах макромолекулы могут взаимодействовать и образовывать так называемые ассоциаты. С увеличением концентрации растворов ВМС или с понижением их температуры размер и длительность существования ассоциатов увеличиваются. Это может привести к тому, что ассоциаты можно будет рассматривать как новую фазу.
На образование дисперсий оказывает влияние и растворитель. В растворителях, полярность которых соответствует полярности ВМС, происходит истинное растворение с образованием молекулярных растворов (агар-агар и желатин в воде или каучук в бензине). При несоответствии полярности растворителя и ВМС образуются золи или дисперсии. Так, например, можно получить золь желатина в спирте, золи нитроцеллюлозы в воде, каучука в воде (латексы) и др.