
- •Введение
- •1. Лабораторный практикум
- •1.1. Лабораторная работа №1. Исследование вязкости жидкости
- •1.1.1. Теоретические основы
- •1.1.2. Методика проведения эксперимента
- •1.1.3. Порядок выполнения работы
- •1.1.4. Содержание отчета и его форма
- •1.2. Лабораторная работа №2. Исследование гидростатического давления Цель работы – изучение свойств гидростатического давления в замкнутой области.
- •1.2.1. Теоретические основы
- •1.2.2. Методика проведения эксперимента
- •1.2.3. Порядок выполнения работы
- •1.2.4. Содержание отчета и его форма
- •1.3. Лабораторная работа №3. Относительный покой жидкости
- •1.3.1. Теоретические основы
- •1.3.2. Математическая обработка наблюдений
- •1.3.3. Методика выполнения эксперимента
- •1.3.4. Порядок выполнения работы
- •1.3.5. Содержание отчета и его форма
- •1.4. Лабораторная работа №4. Изучение режимов течения жидкости
- •1.4.1. Теоретические основы
- •1.4.2. Методика выполнения эксперимента
- •1.4.3. Порядок выполнения работы
- •1.4.4. Содержание отчета и его форма
- •1.5. Лабораторная работа №5. Определение коэффициента вязкости жидкости методом пуазейля
- •1.5.1. Теоретические основы
- •1.5.2. Порядок выполнения работы
- •1.5.3. Содержание отчета и его форма
- •1.6. Лабораторная работа №6. Определение зависимости потерь на трение в трубе от режима течения жидкости
- •1.6.1. Теоретические основы
- •Течении
- •1.6.2. Порядок выполнения работы
- •1.6.3. Содержание отчета и его форма
- •1.7.2. Методика выполнения эксперимента
- •1.7.3. Порядок выполнения работы
- •1.7.4. Содержание отчета и его форма
- •1.8.2. Методика выполнения эксперимента
- •1.8.3. Порядок выполнения работы
- •1.8.4. Содержание отчета и его форма
- •1.9.2. Методика выполнения эксперимента
- •1.9.3. Порядок выполнения работы
- •1.9.4. Содержание отчета и его форма
- •1.10. Лабораторная работа №10. Определение коэффициента местных сопротивлений
- •1.10.1. Теоретические основы
- •1.10.2. Методика выполнения эксперимента
- •1.10.3. Порядок выполнения работы
- •1.10.4. Содержание отчета и его форма
- •1.11. Лабораторная работа №11. Тарирование расходной шайбы
- •1.11.1. Теоретические основы
- •1.11.2. Методика выполнения эксперимента
- •1.11.3. Порядок выполнения работы
- •1.11.4. Содержание отчета и его форма
- •1.12. Тестовые вопросы и задания
- •2. Контрольные работы
- •2.1. Динамика рабочих сред в регулирующих устройствах гидравлических и пневматических систем
- •2.1.1. Пример решения задачи
- •2.1.2. Задача № 1 для самостоятельного решения
- •2.1.3. Задача № 2 для самостоятельного решения
- •2.2. Ламинарное движение жидкости в специальных технических системах
- •2.2.1. Примеры решения типовых задач
- •При одновременном учете влияния давления и температуры
- •2.2.2. Задача № 3 для самостоятельного решения
- •2.2.3. Задача № 4 для самостоятельного решения
- •2.3. Гидропневматические приводы технических систем
- •2.3.1. Пример решения задачи
- •2.3.2. Задача № 5 для самостоятельного решения
- •2.3.3. Задача № 6 для самостоятельного решения
- •3. Курсовая работа
- •3.1. Тематика и содержание курсовой работы
- •3.2. Общие правила оформления курсовой работы
- •3.3. Методика гидравлического расчета сложных трубопроводных систем
- •3.4.2 Гидравлический расчет приводов главного движения протяжных станков
- •3.5.1. Структура и принцип действия гидравлического привода протяжного станка 7534
- •3.5.3. Расчет гидродинамических параметров протяжного станка при выполнении операции протягивания (рабочего хода)
- •3.5.4. Расчет гидродинамических параметров протяжного станка при выполнении операции холостого хода протяжки
- •3.5.5. Расчет гидродинамических параметров протяжного станка при выполнении операции отвода протяжки из рабочей зоны
- •3.5.6. Расчет теплообменника
- •Заключение
- •Библиографический список
- •12. Задачник по гидравлике, гидромашинам и гидроприводам: учеб. Пособие/ под ред. Б.Б. Некрасова.- м.:Высш. Шк., 1989. - 245 с.
- •13. Бутаев д.А. И др. Сборник задач по машиностроительной гидравлике: учеб. Пособие/под ред. И.И. Куколевского и л.Г. Подвивза.- м.: Машиностроение, 1981. - 484 с.
- •20. Киселев п.Г. И др. Справочник по гидравлическим расчетам: учебное пособие. - м.: Энергия, 1972. – 312 с.
- •Оглавление
- •Гоувпо «Воронежский государственный технический университет»
- •394026 Воронеж, Московский просп., 14
2.3. Гидропневматические приводы технических систем
В соответствии с выполняемыми функциями элементов в гидро- или пневмосистеме можно выделить: источник питания, цепи управления и исполнительные устройства. От источника питания производится снабжение остальных частей системы рабочей средой под давлением. Цепи управления представляют собой совокупность устройств, предназначенных для преобразования и передачи сигналов к исполнительным устройствам. Цепь управления и исполнительное устройство образуют гидравлический привод, если рабочей средой служит жидкость, и газовый (пневматический) привод, если рабочей средой является газ.
Методика расчета гидропневмоприводов базируется на балансе напоров потока в гидропневмосистеме с включенным в нее насосом. При установившемся движении жидкости в трубопроводе и без учета малых скоростных напоров это соотношение имеет вид
(2.47)
где
- потребный напор, т.е. энергия, которую
необходимо сообщить единице веса
жидкости для ее перемещения в гидросистеме
при заданном расходе;
- статический
напор, т. е. разность гидростатических
напоров жидкости в конечных точках
гидросистемы;
- сумма потерь
напора в гидросистеме.
При установившемся режиме работы, когда расход в системе трубопроводов не меняется со временем, развиваемый насосом напор равен потребному напору гидросети, т.е.
.
(2.48)
Задачи о работе насосов на сеть подразделяются на две основные группы:
1) Подбор насоса
для данной гидросистемы при требуемой
подаче
.
Решение таких задач основано на вычислении
потребного напора
и, следовательно, напора насоса
.
Величины
и
являются исходными для подбора
соответствующего насоса и его двигателя.
2)
Определение режима работы данного
насоса в гидросистеме. Решение таких
задач основано на совместном рассмотрении
характеристик насоса и гидросистемы.
Для решения задачи в координатах Q
-
Н
строятся в одинаковом масштабе рабочая
характеристика насоса
и характеристика гидросети
,
представляющая зависимость потребного
напора от расхода при заданном статическом
напоре
.
При этом,
величина статического напора
помимо разности гидростатических
напоров в конечных точках гидросистемы
также включает в себя изменение
гидростатического напора под действием
активной внешней нагрузки, воздействующей
на выходное звено гидродвигателя. Так,
при использовании в качестве гидродвигателя
силового гидроцилиндра дополнительное
изменение гидростатического напора
сети будет составлять:
(2.49)
где R - величина внешней нагрузки, воздействующей на шток-поршень силового гидроцилиндра;
- удельный вес
рабочей жидкости;
S - активная площадь шток-поршня силового гидроцилиндра.
Для гидроцилиндра с односторонним шток-поршнем и противодействующей выдвижению штока внешней нагрузкой величина активной площади будет равна
,
(2.50)
где
и
- площади поршня и штока гидроцилиндра,
соответственно.
Для гидродвигателя в виде гидромотора дополнительное изменение гидростатического напора сети будет равно
(2.51)
где M - внешний крутящий момент (нагрузка) гидромотора;
- рабочий объем
гидромотора.
Характеристика
гидросети выражается уравнением (2.47),
в котором
- характеристика трубопровода,
т.е. зависимость суммарных потерь напора
в трубопроводе на преодоление местных
гидравлических сопротивлений и
сопротивлений трения по длине трубопровода
от расхода жидкости. В машиностроительной
гидравлике для учета суммарных гидропотерь
обычно применяют общую формулу в виде
(2.52)
где величина k, называемая сопротивлением трубопровода, и показатель степени m имеют различные значения в зависимости от режима течения жидкости в трубопроводе. Для ламинарного режима течения
и m
= 1;
(2.53)
для турбулентного режима течения
и m
= 2,
(2.54)
где
=
;
- эквивалентная длина трубопровода;
- коэффициент Дарси
(потерь на трение) при турбулентном
режиме течения жидкости в трубопроводе.
При этом все потери следует приводить к расходу в нагнетательной линии гидродвигателя.
Если гидросистема представляет собой сложный трубопровод, т. е. содержит участки, соединенные между собой последовательно и (или) параллельно, то при решении задачи сложный трубопровод вначале разбивается на ряд простых, рассчитываются и строятся характеристики каждого из простых трубопроводов, затем производится сложение характеристик простых трубопроводов, причем сначала соединенных параллельно, а затем - последовательно. В результате получают суммарную кривую потребного напора для всей гидросистемы как при ламинарном, так и при турбулентном режимах течения жидкости.
Режим работы насоса в гидросистеме определяется его рабочими характеристиками, представляющими собой графические зависимости напора насоса, потребляемой им мощности и КПД от подачи насоса при постоянной частоте вращения. У объемных насосов (поршневых, роторных и др.) их подача почти не зависит от напора, поэтому ее регулирование осуществляют либо изменением частоты вращения насоса, либо применением специальных насосов переменной производительности, у которых на ходу изменяется рабочий объем насоса. Существует и более простой, хотя и менее экономичный способ регулирования подачи за счет перепуска жидкости со стороны нагнетания на сторону всасывания насоса. Для этой цели применяют различные регулируемые дроссели и переливные клапаны, а также автоматы разгрузки и другие специальные устройства. При стационарном режиме работы подача насоса и развиваемый им напор определяются точкой пересечения характеристик насоса и гидросистемы (суммарной характеристики потребного напора), в которой выполняется условие (2.48), после чего нетрудно определить скорости гидродвигателей, находя соответствующие им расходы, а также развиваемую ими мощность в соответствии с уравнением
,
(2.55)
где R - величина полезной внешней нагрузки на гидродвигатель;
- скорость перемещения
выходного звена гидродвигателя.
Зная КПД насоса
,
можно найти приводную мощность насоса
в соответствии с уравнением
(2.56)
где
- напор и подача насоса в рабочей точке
(точке пересечения характеристик насоса
и потребного напора).