Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭКЗАМЕН / Metoda_po_sdache_ekzamena_po_mikrovolnovke.docx
Скачиваний:
139
Добавлен:
10.10.2021
Размер:
10.55 Mб
Скачать

15. Приборы со скрещенными полями (м-типа): - магнетроны, амплитроны и митроны. Принцип действия, коэффициент полезного действия. Основные конструктивные разновидности. Сравнение с приборами о-типа

Приборы М-типа обладают скрещенными электрическим и магнитным постоянными магнитными полями, в которых движется поток электронов. В приборах М-типа в процессе взаимодействия электронов с полем электроны смещаются в сторону более высокого потенциала (к аноду), на каждом витке теряя часть своей потенциальной энергии, которая и передается СВЧ-полю, таким образом, они отличаются от приборов О-типа видом передаваемой энергии (в приборах О-типа передаётся кинетическая энергия). Помимо этого, отличие от приборов О-типа, где постоянное магнитное поле направлено параллельно основной компоненте высокочастотного электрического поля и играет лишь вспомогательную роль для удержания электронных пучков от разрастания, в приборах М-типа (магнетронных), магнитное поле определяет характер движения электронов в высокочастотном поле и является необходимым элементом для их функционирования. Траектория электронов вследствие взаимодействия с магнитным полем в приборах М-типа имеет форму циклоиды.

Магнетрон

Рисунок 1 – Схема устройства магнетрона

Магнетрон включает в себя термокатод 5, анодный блок 1, в котором имеются полости 2, играющие роль объемных резонаторов. Индуктивная петля 4, размещенная в одном из резонаторов, и коаксиальная линия 3 служат для вывода ВЧ энергии.

Работа магнетрона в статическом режиме, т.Е. При отсутствии вч поля. (Принцип действия)

Так как расстояние между анодом и катодом обычно не велико, то можно рассмотреть плоский зазор с длиной . Допустим, что электроны при вылете из катода имеет нулевую скорость, тогда в магнетроне они летят по циклоидам с радиусом . Если , электроны не долетают до анода и возвращаются на катод, значит, анодный ток равен 0. При некотором критическом значении магнитной индукции . Учитывая, что , выходит, что . Без допущения о малом расстоянии между анодом и катодом: .

Рисунок 2 – Траектории электронов при различных значениях магнитной индукции в статическом режиме работы (4 – при критическом значении, 5 – больше критического)

Электродинамическая система магнетрона – кольцевой резонатор. Условие резонанса – равенство фаз первоначальной волны и волны, обогнувшей резонатор по кольцу, или же кратность сдвига фаз 2π: (N – число резонаторов). Резонаторная система магнетрона замедляющая, в ней распространяются медленные электромагнитные волны. В зависимости от желаемой дисперсионной характеристики, формы пазов анодного блока могут быть различными.

Рисунок 3 – Формы резонаторов магнетрона (а – щель-отверстие, б – щель, в – сектор, г– чередующиеся размеры резонаторов)

В большинстве современных магнетронов используется π-вид колебаний. Его основная особенность – сдвиг фаз между соседними резонаторами равен π радиан.

Рассмотрим движение электронов в присутствие ВЧ поля.

Рисунок 4 – Развертка области взаимодействия

При вылете электрона из точки К, он ускоряется анодным напряжением и движется по циклоиде, в точке L на него действует тормозящее переменное поле 1 резонатора, заставляющее его двигаться в точку М, где он вновь ускоряется анодным напряжением. Если время движения электрона из К в М составляет половину периода, то поле 2 резонатора вновь его тормозит. Далее процесс повторяется, пока электрон не долетит до анода. Электрон, взаимодействующий с полем таким образом, называется электроном отдачи. Если бы электрон в этот же момент вылетел возле 2 резонатора, переменное поле было бы для него ускоряющим, и он в течение одного цикла взаимодействия сразу же вернулся бы на катод. Такие электроны называются электронами потерь. Поскольку передача энергии поля этому электрону ограничена одним циклом взаимодействия, основной вклад вносят электроны отдачи.

Исходя из выше указанного условия для времени пролета электронов между резонаторами , или же , можно написать условие синхронизма: , называют пороговым потенциалом.

КПД магнетрона. Энергия, переданная ВЧ полю есть разность полной энергии электрона на катоде и аноде . Тогда электронный КПД определим как . Кинетическая энергия электронов на катоде равна 0, при этом потенциал анода принимаем равным 0, значит ,

.

Отсюда:

.

Помимо КПД взаимодействия электронов с полем есть еще КПД резонаторной системы . Тогда полный КПД .

Митрон

Рисунок 5 – Схема устройства митрона

Пространство взаимодействия находится между встречно-штыревой структурой 1 и холодным катодом 2. Прямонакальный катод 3 и управляющий электрод 4 образуют электронную пушку. 5 – керамическая оболочка, внутри которой находится вакуум. Встречно-штыревая структура соединениа с тороидальным резонатором. 7 – магнитопровод, 8 – магниты, создающие магнитное поле.

Электроны, эмитированные с термокатода под действием управляющего электрода, на который подан положительный потенциал, образуют поток, который попадает в пространство взаимодействия. Встречно-штыревая структура, содержащая четное число штырей, находится под потенциалом холодный катод соединен с термокатодом и имеет нулевой потенциал. В пространстве взаимодействия происходят π-колеания ВЧ поля, с которым взаимодействуют электроны.