Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биоинженерия / ТИ_ССС / TE_ruvinov2012.pdf
Скачиваний:
96
Добавлен:
08.05.2021
Размер:
8.24 Mб
Скачать

 

 

8.4. SUMMARY AND CONCLUSIONS 113

)

 

 

 

 

*

+

,

-

 

.

Figure 8.1: Prevascularization of a cardiac patch created in affinity-binding alginate scaffolds on the omentum improves its therapeutic outcome. F. Pacing through the scar electrode in hearts treated with an omentum-generated patch trigger synchronized beating of the healthy right ventricle, suggesting electrical integration of the patch. (G) Comparison of signal amplitude in the scar zone after grafting an omentum-generated patch (black) or in stitched hearts (white). H. Comparison of capture threshold intensity in hearts grafted with an omentum-generated patch (black) or only stitched (white). I-K. Cardiac function evaluation by 2D echocardiography of infarcted hearts after treatment with a stitch (sham), implantation of in vitro-grown patch, empty patch grown on the omentum (Om), or omentumgenerated cardiac patch (Om+): comparison of FAC (I) change, LVEDD (J), and LVESD (K). Changes were calculated as follows: [(values obtained after four weeks – baseline values)/baseline values] ×100%. Statistical evaluations were performed by unpaired t test and one-way ANOVA, P < 0.05. [19].

8.4SUMMARY AND CONCLUSIONS

This chapter deals with a major issue in bioengineering of functional cardiac patches—the need for vascularization of the cell constructs before subsequent implantation into the infarct. One strategy developed to address this critical need relies on the addition of endothelial cells (ECs) to the cell mixture, to promote vessel formation in the developed tissue. Further refinement of this strategy includes sequential cell seeding and the use of different scaffold compartments (i.e., in channeled scaffolds) to improve cell organization and formation of primitive vascular networks. An alternative strategy described is the use of the body as a bioreactor for more effective pre-vascularization. Omentum-vascularized cardiac patches have shown improved electrical integration and beneficial effects on cardiac function in rat MI model. Collectively, the already available data clearly show

114 BIBLIOGRAPHY

several advancements toward the introduction of vascular beds and networks into the engineered cardiac patches. Further development will allow generation of thick cell constructs, with a size suitable for clinical implementation in patients.

BIBLIOGRAPHY

[1]Maidhof R, Marsano A, Lee EJ, Vunjak-Novakovic G. Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol Prog. 2010;26:565–72. DOI: 10.1089/107632702753724950 109

[2]Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:15211–6.

DOI: 10.1073/pnas.1006442107 109

[3]Chiu LL, Radisic M, Vunjak-Novakovic G. Bioactive scaffolds for engineering vascularized cardiac tissues. Macromol Biosci. 2010;10:1286–301. DOI: 10.1002/mabi.201000202 109

[4]Miyagi Y, Chiu LL, Cimini M, Weisel RD, Radisic M, Li RK. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials. 2011;32:1280–90. DOI: 10.1016/j.biomaterials.2010.10.007 109

[5]Saik JE, Gould DJ, Watkins EM, Dickinson ME, West JL. Covalently immobilized plateletderived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater. 2011;7:133–43. DOI: 10.1016/j.actbio.2010.08.018 109

[6]Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A. 2003;65:489–97.

DOI: 10.1002/jbm.a.10542 109

[7]Gao J, Liu J, Gao Y, Wang C, Zhao Y, Chen B, et al. A Myocardial Patch Made of Collagen Membranes Loaded with Collagen-Binding Human Vascular Endothelial Growth Factor Accelerates Healing of the Injured Rabbit Heart. Tissue Eng Part A. 2011.

DOI: 10.1089/ten.tea.2011.0105 109

[8]Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res. 2007;100:263–72. DOI: 10.1161/01.RES.0000257776.05673.ff 110

[9]Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, et al. Transplantation of a Tissue-Engineered Human Vascularized Cardiac Muscle. Tissue Eng Part A. 2009.

DOI: 10.1089/ten.tea.2009.0130 110

BIBLIOGRAPHY 115

[10]Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res. 2011;109:47–59. DOI: 10.1161/CIRCRESAHA.110.237206 110

[11]Iyer RK, Chiu LL, Radisic M. Microfabricated poly(ethylene glycol) templates enable rapid screening of triculture conditions for cardiac tissue engineering. J Biomed Mater Res A. 2009;89:616–31. DOI: 10.1002/jbm.a.32014 110

[12]Iyer RK, Odedra D, Chiu LL, Vunjak-Novakovic G, Radisic M. VEGF Secretion by NonMyocytes Modulates Connexin-43 Levels in Cardiac Organoids. Tissue Eng Part A. 2012. DOI: 10.1089/ten.TEA.2011.0468 110

[13]Lee H, Cusick RA, Utsunomiya H, Ma PX, Langer R, Vacanti JP. Effect of implantation site on hepatocytes heterotopically transplanted on biodegradable polymer scaffolds. Tissue Eng. 2003;9:1227–32. DOI: 10.1089/10763270360728134 111

[14]Zhang QX, Magovern CJ, Mack CA, Budenbender KT, Ko W, Rosengart TK. Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. J Surg Res. 1997;67:147–54. DOI: 10.1006/jsre.1996.4983 111

[15]Zhou Q, Zhou JY, Zheng Z, Zhang H, Hu SS. A novel vascularized patch enhances cell survival and modifies ventricular remodeling in a rat myocardial infarction model. J Thorac Cardiovasc Surg. 2010;140:1388–96 e1-3. DOI: 10.1016/j.jtcvs.2010.02.036 111

[16]Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, et al. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. Faseb J. 2006;20:708–10. DOI: 10.1096/fj.05-4715fje 111

[17]Suzuki R, Hattori F, Itabashi Y, Yoshioka M, Yuasa S, Manabe-Kawaguchi H, et al. Omentopexy enhances graft function in myocardial cell sheet transplantation. Biochemical and biophysical research communications. 2009;387:353–9. DOI: 10.1016/j.bbrc.2009.07.024 111

[18]Amir G, Miller L, Shachar M, Feinberg MS, Holbova R, Cohen S, et al. Evaluation of a peritoneal-generated cardiac patch in a rat model of heterotopic heart transplantation. Cell Transplant. 2009;18:275–82. DOI: 10.3727/096368909788534898 111

[19]Dvir T, Kedem A, Ruvinov E, Levy O, Freeman I, Landa N, et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:14990–5.

DOI: 10.1073/pnas.0812242106 111, 112, 113

Соседние файлы в папке ТИ_ССС