Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Васильев Ю.Г гомеостаз и пластичность мозга

.pdf
Скачиваний:
35
Добавлен:
13.04.2021
Размер:
7.36 Mб
Скачать

Таким образом, рассматривая деятельность мозга, мы сталкиваемся с чрезвычайно сложной системой разнообразных эндогенных взаимодействий, способных существенно модулировать его ответы на внешние и внутренние изменения. Не преувеличивая роли ни одного из них, необходимо понять, что каждый из указанных факторов выполняет свои задачи, и дисфункция любого из уровней может грубо нарушить структуру и функцию всей системы. Ни в этой монографии и, как нам представляется, ни в одной другой работе невозможно полно осветить все стороны функции мозга, особенно в аспекте его коммуникативных взаимодействий с другими системами организма. Мы пытаемся более подробно рассмотреть лишь некоторые вопросы работы мозга и обращаем внимание в первую очередь на межтканевую внутримозговую интеграцию, ни в коем случае не забывая и про другие влияния.

Список литературы

1.Батуев, А.С. Высшая нервная деятельность / А.С. Батуев. – М. : Высшая школа, 1991.

2.Бианки, В.М. Асимметрия мозга животных / В.М. Бианки. – Л. : Наука, 1985.

3.Котляр, Б.И. Механизмы формирования временной связи (нейрофизиологический анализ) / Б.И. Котляр. – М. : МГУ, 1977.

4.Нейрохимия / под ред. И.П. Ашмарина. – М. : Изд-во Ин-та биомедицинской химии РАМН РФ, 1996.

5.Павлов, И.П. Полное собрание сочинений: в 6 т. / И.П. Павлов. – М., 1951. – 1952.

6.Соколов, Е.Н., Нейробионика / Е.Н. Соколов, Л.А. Шмелев. – М. : Наука, 1983.

7.Нейрон-Мозг / под ред. П.В. Симонова. – М. : Мир, 1984.

8.Эделмен, Дж. Разумный мозг / Дж. Эделмен, В. Маунткасл. – М. : Мир, 1981. – 133 с.

9.Экклс, Дж. Физиология синапсов / Дж. Экклс. – М. : Мир, 1989.

10.Boring, E.C. The physiology of consiousness / E.C. Boring // Science. – 1932. – № 75. – P. 32.

11.Ramón y Cajal, S. A quelle époque apparaissent les expansions des cellules nerveuses de la moelle épinière du poulet / S. Ramón y Cajal // Anatomischer Anzeiger. – 1890. – № 5. – Р. 609–613.

3 НЕЙРОН. СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА

Нейрон, или нейроцит, состоит из тела и отростков. У каждого нейрона есть один длинный, обычно не ветвящийся или слабо ветвящийся аксон, по которому возбуждение передается от одного нейрона

21

к другому. Аксон, однако, может сильно ветвиться на дальнем от тела конце. Эти ветвления аксона называют аксонными терминалями (окончаниями), или телодендроном.

Место нейрона, от которого начинается аксон, имеет особое функциональное значение и называется аксонным холмиком. Здесь, по сути, решается возможность формирования сигнала, который будет передан другим клеткам. Этот сигнал генерируется как потенциал действия, который представляет собой специфический электрический ответ мембраны возбудившейся нервной клетки. Функцией же аксона является проведение нервного импульса к аксонным терминалям. По ходу аксона могут образовываться его ответвления – коллатерали. Коллатерали могут возвращаться в тот же нервный центр, в котором находится клетка, или связывать ее с соседними областями. Дендриты не обязательны, но обычно нейрон (кроме униполярных или одноотростчатых клеток) содержит от одного до множества дендритов. Основной функцией дендритов является сбор информации от множества других нейронов.

Нейроны новорожденного имеют меньшее число дендритов (межнейронных связей). С возрастом их содержание неуклонно увеличивается, что сопровождается возрастанием массы мозга, которое интенсивно продолжается в ранние постнатальные сроки онтогенеза и затягивается вплоть до полового созревания. У человека увеличение массы мозга продолжается до 30–35 лет.

Большинство аксонов нервной системы позвоночных покрывается миелином. Миелинизацию аксонов осуществляют клетки глии. В центральной нервной системе эту роль выполняют олигодендроциты, в периферической – нейролеммоциты.

Основным свойством нейрона является способность возбуждаться (генерировать электрический импульс) и передавать (проводить) это возбуждение к другим нейронам и клеткам периферических органов.

Форма и размеры нейронов, длина их отростков весьма вариабельны. Диаметр перикариона (тела) нейрона колеблется от 5–8 до 100– 120 мкм. Нейрон может иметь звездчатую, веретеновидную, пирамидную, округлую, грушевидную, овальную и иную форму. Отличаются нейроны и по числу отростков, подразделяясь на униполярные, псевдоуниполярные, биполярные и мультиполярные. В свою очередь мультиполярные клетки могут отличаться числом и разветвленностью дендритов, формой образуемого ими дендритного дерева (распространенностью ветвлений этих отростков в объеме нервной ткани), длиной и распределением отростков нейронов.

На световом уровне при общих методах окрашивания тела нервных клеток имеют оксифильную цитоплазму, крупное ядро округлой или

22

овальной формы. Ядро занимает центральное положение, но иногда смещается к одному из полюсов нейрона, что чаще всего связано с реактивными процессами. В ядре хорошо развито одно или несколько ядрышек. В части нейронов можно видеть два и более ядра (до 10–15). Как правило, это характерно для вегетативных узлов, особенно встроенных в структуру внутренних органов (внутриорганные или интрамуральные ганглии, особенно органов на уровне таза). Такие многоядерные клетки, по сути, являются редуцированными проявлениями клеточной пролиферации, не завершившихся полноценным делением. Кариоплазма отличается преобладанием диффузного (слабо конденсированного) хроматина. Нейроны имеют высокое сродство к солям серебра (аргирофильность). Специфичными для нейрона структурами цитоплазмы на светооптическом уровне являются хроматофильное вещество цитоплазмы и нейрофибриллы. Хроматофильное вещество цитоплазмы (субстанция Ниссля, тигроид, базофильное вещество) проявляется при окрашивании нервных клеток основными красителями (метиленовым синим, толуидиновым синим, гематоксилином и т. д.) в виде зернистости. Зернистость может быть в виде крупных глыбок неправильной формы, иметь сетевидное строение или в виде мелкой зернистости. Это зависит от типа нейрона (крупные нейроны обычно имеют более крупные глыбки) и от его функционального состояния. На электронно-оптическом уровне хроматофильное вещество цитоплазмы есть не что иное, как скопления цистерн гранулярной эндоплазматической сети. Эти органеллы отсутствуют в аксоне и в аксонном холмике, но имеются в начальных сегментах дендритов. Поэтому тигроид не виден в начале аксона, но прослеживается в дендритах, что позволяет идентифицировать вид отростков. Процесс разрушения или распада глыбок хроматофильного вещества цитоплазмы называется тигролизом и наблюдается при реактивных изменениях нейронов (например при повреждении) и их гибели. Тигролиз нередко сопровождается вакуолизацией цитоплазмы, при этом уплощенные цистерны ЭПС разбухают, а цитоплазма приобретает вспененный вид.

Нейрофибрилла – эта структура, выявленная в нейроне одной из первых при помощи классических методов импрегнации серебром. Интересен тот факт, что картина, наблюдаемая нами под микроскопом при импрегнации препаратов нервной ткани, по сути, является множеством артефактов, поскольку этот эффект возникает посмертно, в результате осаждения грубого осадка металла на органеллах цитоскелета нейрона. Основой для выявления нейрофибрилл являются нейрофиламенты и нейротубулы, формирующие каркас нервной клетки. Нейрофибриллы видны как нежная сеть волокон в цитоплазме нервных клеток. Кроме того, в нейронах довольно часто можно видеть липидные

23

включения (зерна липофусцина). Они характерны для старческого возраста и часто появляются при дистрофических процессах. Зерна липофусцина являются остаточными тельцами, возникающими в результате неполного переваривания. Их накопление может приводить к нарушению нормальных метаболических процессов в клетках и их гибели. В ряде нейронов в норме обнаруживаются пигментные включения (например с меланином), что обуславливает окрашивание нервных центров, содержащих подобные клетки (черная субстанция, голубоватое место, красное ядро).

Субмикроскопическое строение и некоторые цитофизиологи-

ческие особенности тела нейрона. Несмотря на крайнее разнообразие морфологии нейронов, они имеют ряд общих черт строения. Ядра нейронов, особенно крупноклеточных, имеют округлую или овальную форму. Кариолемма часто формирует впячивания, что может значительно увеличивать площадь контакта поверхности ядра с цитоплазмой (нейроплазмой). Ядерная оболочка имеет большое количество ядерных пор, что указывает на активные процессы обмена, в том числе с РНК и субъединицами рибосом. Кариоплазма в крупных нейронах светлая. Но в мелких нервных клетках можно видеть и повышенную склонность к осаждению солей осмия (осмиофильность) и темное ядро. Данные особенности на светооптическом уровне проявляются в гипохромности или гиперхромности ядер (т. е. пониженной или повышенной склонности к окрашиванию ядерными красителями). Хорошо развит ядрышковый аппарат. В ядре обычно имеется 1–2 крупных умеренной плотности ядрышка, занимающих центральное положение. В мелких нервных клетках ядрышки мельче, их может быть до 3–6 и более. При реактивных проявлениях в клетке можно наблюдать смещение ядрышка к одному из краев ядра и его распад.

Матрикс цитоплазмы (нейроплазмы) гомогенный или мелкозернистый, слабой или умеренной электронной плотности. В нейроне сильно развита гранулярная ЭПС, представленная скоплениями или диффузно расположенными плоскими цистернами и трубочками. Как уже указывалось выше, гранулярная ЭПС преобладает в теле и может содержаться в начальных сегментах дендритов. За ней закреплено участие в процессах синтеза медиаторов и модуляторов, мембранных белков и т. д. Кроме связанных имеется и значительное число свободных полисом и рибосом (Питерс А., Полей С., Уебстер Г., 1972).

В нейронах хорошо развиты митохондрии. Они средних и больших размеров (диаметр 1–3 мкм), овальной или нитчатой формы, кристы имеют трабекулярное строение. Нейроны в энергетическом отношении крайне зависимы от аэробного окисления и во взрослом состоянии фактически неспособны к анаэробному гликолизу. В то же время тела

24

нейронов имеют весьма высокую энергетическую активность. Эта активность многократно превышает таковую в зонах прилежащего нейропиля, и особенно белого вещества. В сером веществе нередко высокой активностью энергопотребления характеризуются участки скоплений синапсов. В то же время распределение кислорода и глюкозы с учетом возможностей транспорта из кровеносных сосудов и уровня потребления таково, что их запасы истощаются за секунды после прекращения кровотока (Васильев Ю.Г., Чучков В.М., 2003). В связи с этим нервные клетки находятся в выраженной зависимости от поступления кислорода и глюкозы и при нарушении кровотока практически сразу прекращают свою жизнедеятельность. Момент прекращения кровотока в головном мозге означает начало клинической смерти. Практически сразу же начинаются процессы саморазрушения в нейронах и прекращается их специфическая функциональная активность. Их мембраны деполяризуются. Митохондрии, ЭПС, ядерные оболочки набухают, а затем разрушаются. Начинаются процессы аутолиза и перекисного окисления. При мгновенной смерти при комнатной температуре и нормальной температуре тела процессы саморазрушения в нейронах обратимы в течение 5–7 минут. Это и является сроком так называемой клинической смерти, когда возможно оживление организма. Необратимые изменения в нейронах жизненно важных центров, например дыхательного и сосудодвигательного, приводят к переходу клинической смерти в биологическую.

В нейронах значительного развития достигает комплекс Гольджи. Он может располагаться компактно или быть рассеян в цитоплазме тела нейрона. Специфическими органеллами нейрона являются нейрофиламенты и нейротубулы.

Нейрофиламенты представляют собой промежуточные филаменты диаметром 8–10 нм, образованные фибриллярными белками (белками так называемого нейрофибриллярного триплета, или нейрофибриллярными кислыми белками). Основными функциями данной органеллы являются опорно-каркасная, обеспечение стабильной формы нейрона и нервной системы в целом. Аналогичную роль играют тонкие микрофиламенты (поперечный диаметр 6–8 нм), содержащие белки актины. В отличие от подобных микрофиламентов в других тканях и клетках, они не соединяются с микромиозинами, что делает невозможным активные сократительные функции в зрелых нервных клетках.

Нейротубулы по основным принципам своего строения практически не отличаются от микротрубочек. Они, как и все микротрубочки, имеют поперечный диаметр около 24 нм и на поперечном разрезе сформированы 13 молекулами глобулярных белков тубулинов. Как и везде, они поляризованы. В отличие от большинства микротрубочек в

25

других клетках, нейротубулы весьма стабильны. Тубулин в них находится в метилированной форме и нередко кэпирован (концы нейротубул прикрыты белковыми молекулами, функция которых заключается в стабилизации нейротубул и предохранении их от разрушения). В нервной ткани они выполняют очень важную, если не сказать, уникальную роль. Они несут опорно-каркасную функцию, обеспечивают процессы циклоза, направляя органеллы и включения. Полярность органеллы, в которой имеется отрицательно и положительно заряженный конец, позволяет контролировать диффузионно-транспортные потоки в аксоне (так называемый быстрый и медленный аксоток). Кроме того, значительное число нейрофизиологов приписывает микротрубочкам роль хранилища поступающей в мозг информации.

В цитоплазме тел нейронов часто встречаются лизосомы. Они участвуют в пластических процессах, осуществляя катаболизм (разрушение) старых органелл и структур. В результате переваривания образуются остаточные тельца, включая липофусцин. Избыточное накопление липофусцина может приводить к дистрофическим процессам в нейроне, к нарушению его специфической активности и даже гибели. Такие явления характерны для старческих изменений и при различных патологических воздействиях. В теле нейронов можно видеть также транспортные пузырьки, часть которых содержит медиаторы (нейромедиаторы) и модуляторы, окруженные мембраной. Их размеры и строение зависят от содержания того или иного вещества. Достигнув окончания аксона, медиаторы накапливаются в синаптических пузырьках. Обычно зрелый нейрон синтезирует и выделяет лишь один медиатор, в соответствии с этим он имеет название. Например, серотонинергический нейрон образует и выделяет серотонин, дофаминергический – дофамин, холинергический – ацетилхолин и т. д.

Дендриты при световой микроскопии видны как короткие, зачастую сильно ветвящиеся отростки нейрона. Их ветвления более выражены в терминальных областях. Распространение дендритного дерева может быть ограничено областью нервного центра, в котором располагается нейрон, или прилежащими зонами. Дендриты в своих начальных сегментах содержат органеллы, характерные для тела нейрона, и фактически являются его продолжением. В частности, можно видеть цистерны гранулярной ЭПС, в результате чего на световом уровне в них видна хроматофильная субстанция. Хорошо развит цитоскелет, поддерживающий форму отростков.

Аксон, или нейрит, чаще всего длинный, слабо ветвится или не ветвится. Уже в начальном сегменте аксона, в отличие от дендрита, в нем отсутствует гранулярная ЭПС. Микротрубочки и микрофиламенты располагаются упорядоченно и на поперечных срезах нередко при-

26

нимают форму решетки. В цитоплазме аксона видны митохондрии, транспортные пузырьки. Аксоны в основном миелинизированы (в ЦНС – олигодендроцитами, в периферической нервной системе – леммоцитами). Начальный сегмент аксона расширен и имеет название аксонного холмика. Именно в зоне аксонного холмика происходит временная и пространственная суммация поступающих в нервную клетку сигналов, и если возбуждающие сигналы достаточно интенсивны, то в аксоне формируется потенциал действия и волна деполяризации (нервный импульс) направляется вдоль аксона, передаваясь на другие клетки.

От отростков нейронов, а нередко и от его тела, отходят небольшие выпячивания, которые имеют форму, напоминающую шипики, откуда и получили свое название. Особенно развиты они на некоторых нервных клетках в составе ЦНС. Шипики являются постсинаптическими структурами и соответствуют зонам взаимодействия нервных клеток с другими. Они имеют элементы цитоскелета, митохондрии. Нередко видны уплощенные цистерны и электронно-плотное вещество мембраны.

Аксоток (аксоплазматический транспорт веществ). Нервные волокна, как уже указывалось выше, имеют микротрубочки, по которым перемещаются вещества от тела нервной клетки к периферии (антероградный аксоток) и от периферии к центру (ретроградный аксоток). Направление аксотока обеспечивает полярность микротрубочек. В нем участвует белок кинезин, взаимодействующий с тубулином микротрубочек и осуществляющий транспорт с затратой энергии АТФ. Различают быстрый (со скоростью 100–1000 мм/сут.) и медленный (со скоростью 1–10 мм/сут.) аксоток (Куффлер С., 1979).

Быстрый аксоток одинаков для различных волокон и разных маркеров. Он требует значительной концентрации АТФ, что связано с высокими энергозатратами для его осуществления, и происходит в составе транспортных пузырьков. Быстрый аксоток осуществляет транспорт медиаторов и модуляторов.

Медленный аксоток связан с распространением от центра к периферии биологически активных веществ, а также составляющих компонентов мембран клеток и белков. Благодаря медленному антероградному току биологически активные вещества осуществляют дифференциацию скелетных мышц, что имеет большое биологическое значение. За счет ретроградного тока нейротропные вещества поступают от периферии к центру, оказывая трофическое влияние на саму нервную клетку. В частности, известно, что при перерезке двигательных нервов происходит лизис нейронов. Доказано, что за счет ретроградного тока в ЦНС могут поступасть различные токсические вещества.

27

Главную роль в возбуждении нейрона играют ионные каналы и насосы мембраны. Одни насосы работают постоянно: откачивают из нейрона ионы натрия и накачивают в цитоплазму ионы калия, обозначаясь как натрий-калиевые ионные насосы. Для их функции постоянно требуется энергия. В результате деятельности этих насосов концентрация ионов калия внутри клетки примерно в 30 раз превышает их концентрацию вне клетки, тогда как концентрация ионов натрия в клетке очень небольшая – примерно в 50 раз меньше, чем снаружи клетки. Между цитоплазмой и внешней средой на мембране клетки в состоянии покоя возникает потенциал: цитоплазма клетки заряжается отрицательно на величину около 70 мВ относительно внешней среды клетки. Этот потенциал обозначается как потенциал покоя. Он сохраняется в отсутствие ионов натрия, но зависит от концентрации ионов калия (Шульговский В.В., 1987; С. Гроф, 2000; Pribram K.H., 1991).

Основная роль в возбуждении принадлежит открытию ионных каналов, благодаря которым ионы натрия способны проникать в цитоплазму клетки, а ионы калия, в свою очередь, диффундировать по градиенту концентрации в межклеточное вещество.

Пространственная конфигурация белка, формирующего натриевый канал, зависит от потенциала плазмолеммы, открывая возможность для перемещения ионов при достижении потенциала определенной величины. Этот канал называется потенциалзависимым. Таким образом в нейрон поступают положительно заряженные ионы натрия. Другими словами, через мембрану будет протекать входящий ток ионов натрия, который сместит потенциал мембраны в сторону деполяризации, т. е. уменьшит поляризацию мембраны. Чем больше ионов натрия войдет в цитоплазму нейрона, тем больше его мембрана деполяризуется (Wang H.-S., McKinnon D., 1995).

Потенциал на мембране увеличится, открывая все большее количество натриевых каналов. Но он будет расти не бесконечно, а только до тех пор, пока не станет равным примерно +55 мВ. Этот потенциал соответствует присутствующим в нейроне и вне его концентрациям ионов натрия, поэтому его называют натриевым равновесным потенциалом. Вспомним, что в покое мембрана имела потенциал –70 мВ, тогда абсолютная амплитуда потенциала составит величину около 125 мВ. Мы говорим «около», «примерно» потому, что у клеток разного размера и типа этот потенциал может несколько отличаться, что связано с формой этих клеток (например количеством отростков), а также с особенностями их мембран. Таким образом, выражением возбуждения нейрона является генерация на мембране нейрона потенциала действия. Его длительность в нервных клетках составляет величину около

1 мс (Сахаров Д.А., 1974; Hines M.L., Carnevale N.T., 2003).

28

Кроме генерации потенциала действия, нейрон способен передавать его на весьма значительное расстояние. Осуществляется эта передача по отросткам, в первую очередь по аксонам. Аксоны являются основой для формирования нервных волокон, которые в ЦНС образуют тракты, а на периферии объединяются в нервы (Ходжкин А., 1965; Кэндел Э., 1980). Нервные волокна часто окружены специализированными клетками – нейроглией, способной образовывать оболочки из многократно концентрически расположенных мембран – миелина, который значительно ускоряет проведение импульса за счет сальтаторного механизма.

Миелин формируется до и в ранние сроки после рождения, но утолщение волокон осуществляется вплоть до 30 лет. В ходе миелинизации нейролеммоцит или отросток олигодендроцита оборачивается вокруг аксона, образуя многослойную оболочку вокруг него. Миелинизации не подвергается область аксонного холмика и концевые участки аксона. Фактически оборачивается участок сдвоенной мембраны глиоцита, который является частью инвагинации плазмолеммы. Расширенная зона такой инвагинации в безмиелиновом волокне непосредственно охватывает участок аксона. Суженный участок носит название мезаксона. Многократно оборачивающийся вокруг отростка мезаксон и составляет миелин. Таким образом, миелиновая оболочка аксона состоит из плотно упакованных, перемежающихся липидных и белковых мембранных слоев мезаксона. Аксон не полностью покрыт миелином. Участки между такими перерывами называются узлами и окружены одним глиоцитом. Перерывы между узлами называются межузловыми перехватами (перехватами Ранвье). Ширина такого перехвата от 0,5 до 2,5 мкм. Миелин обладает свойствами изолятора, и собственно переключение мембранного потенциала происходит только в участках между миелиновыми оболочками. Зоны межузловых перехватов соответствуют участкам контактов соседних глиоцитов. Функция перехватов связана с имеющимися в их составе ионными каналами и насосами, которые способны к перераспределению ионов между внутриклеточным и межклеточным пространствами. Вследствие этого потенциал действия (возбуждение) «перескакивает» через участки изолированной мембраны, и такой способ передачи возбуждения называется дискретным (прерывистым или скачкообразным, сальтаторным), в отличие от безмиелиногого нервного волокна, где возбуждение распространяется непрерывно и намного медленнее.

Кроме потенциала действия в возбудимых тканях выделяют еще один важный способ передачи информации – так называемые локальные градуальные потенциалы. Градуальные сигналы зависимы от места воздействия и могут быть обусловлены внешними влияниями, меж-

29

синаптической передачей. Динамика сигналов взаимозависима от интенсивности раздражителя и характеристик нейрона. В отличие от потенциала действия градуальные сигналы различаются по интенсивности и длительности. Важнейшим отличительным свойством градуального сигнала является то, что он проводится вдоль клетки пассивно, с использованием механизмов локального перераспределения ионов. Сложность такой передачи заключается в весьма малом диаметре волокон и высоком сопротивлении. В результате такие сигналы относительно быстро затухают при передаче сигнала на большое расстояние. В целом ситуацию можно сравнить с распространением кругов на воде. Градуальные сигналы могут быть существенными при локальных межнейронных взаимодействиях на расстоянии не более 1–2 мм между нейронами внутри отдельного нервного центра. В формировании градуальных потенциалов наряду с химическими могут играть существенную роль электрические синапсы.

Если потенциал действия функционирует по принципу «все или ничего», то градуальные сигналы могут существенно различаться по интенсивности. Собственно суммация многих градуальных сигналов лежит в основе последующего образования потенциала действия. Таким образом, процесс анализа, суммации и реакций нейронов лежит в основе формирования сигналов действия и ответов нервных клеток. Влияние на градуальные сигналы могут оказывать не только нейроны, но и непосредственное глиальное окружение (Ходжкин А., 1965), особенно на фоне того, что межклеточного вещества в ЦНС фактически нет, а пространство между нейронами и глией представлено всего лишь узкими щелями, имеющими крайне небольшой объем, ионный состав которого вследствие этого может быстро изменяться как под воздействием активности нейронов, так и глии. Это оказывает модулирующее влияние на проведение волн деполяризации и градуальных потенциалов, целиком и полностью зависящих от ионных токов, а также от концентрации и распределения самих ионов.

После передачи возбуждения в участке, его передавшем, возникает зона невозбудимости (рефрактерности), в то время как до этого в интактной зоне развивается потенциал действия. Эта последовательность событий повторяется для каждого последующего участка. На каждое такое возбуждение требуется время, соответственно, чем оно меньше, тем большее количество потенциалов действия может проводить нервное волокно за единицу времени. Степень миелинизации волокна и его диаметр являются одними из главных факторов, определяющих скорость проведения возбуждения. В немиелинизированных волокнах она прямо пропорциональна их диаметру, но их диаметр обычно невелик, и скорость проведения возбуждения, как правило, колеблется в

30

Соседние файлы в предмете Анатомия и физиология