Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Билеты гистология одним файлом

.pdf
Скачиваний:
43
Добавлен:
09.03.2021
Размер:
4.62 Mб
Скачать

-амнион

-желточный мешок

11.устанавливается гематотрофный тип питания

12.формируется зародышевый щиток

4.проходит 2-я фаза гаструляции

Формирование хориона

-внезародышевая мезодерма заполняет полость гаструлы и

втом числе подрастает к трофобласту, который после этого называется хорион

-сначала образуются первичные ворсинки хориона

-

подрастает внезародышевая мезодерма - вторичные

 

 

ворсинки

 

-

в более поздние сроки во вторичные ворсинки

 

 

врастают сосуды, прорастающие от зародыша -

 

 

третичные ворсины

 

- устанавливается гематотрофный тип питания - разрушаются

 

 

сосуды слизистой матки и ворсины плавают в лакуных с

кровью

матери, из которой и осуществляется питание

 

XLVII. Образование желточного мешка

 

Идет в 2 стадии:

 

1. клетки гипобласта также делятся, листок подворачивается и

 

формируется желточный пузырек

 

2. стенка пузырька обрастает внезародышевой мезодермой, после

 

чего превращается в желточный мешок

 

 

Функции:

 

 

- желток к этому времени полностью утрачивается

 

 

1 основная роль у человека – орган

 

 

кроветворения до 7-8 недели, потом

 

 

редуцируется.

 

 

4 образование первичных половых клеток –

 

 

гонобластов

 

- зарастает к 3-му месяцу развития - а если

 

 

не зарастает – дивертикул Меккеля -

 

 

слепой отросток подвздошной кишки

 

 

(2%) детей

 

Образование амниона

 

Идет в 2 стадии:

 

5. клетки эпибласта делятся и листок подворачивается с

 

 

образованием амниотического пузырька

 

6.

к стенке амниотического пузырька подрастает

 

внезародышевая мезодерма, после чего пузырек превращается в амнион - в просвете его накапливается жидкость – это будущие околоплодные воды

Функция: 1. роль амортизатора,

2.среды обитания,

3.плод заглатывает амниотическую жидкость,

ивыделяет мочу

Зародышевый диск (щиток)

-располагается между амнионом и желточным мешком

-Строение: это клетки:

3.дна амниона - эпибласт

4. крыши желточного мешка - гипобласт

-в диске расположен материал зародыша

-за его пределами расположены внезародышевые провизорные органы

Вконце 2-й недели начинается вторая фаза гаструляции

-используется два способа:

3.иммиграция – перемещение клеток эпибласта с

образованием утолщения - первичной полоски

(- вследствие деления клеток они начинают смещаться

в каудальный конец зародыша

-происходит столкновение клеточных потоков у средней линии

-происходит слияние двух потоков и потоки направляются вперед, образуя утолщенный клеточный тяж -

первичная полоска)

4.инвагинация - погружение материала эпибласта через

первичную бороздку в пространство между эпибластом и гипобластом с закладкой 3 зародышевых листков – будущих:

4. эктодермы

5. мезодермы

6. энтодермы

(- в середине первичной полоски образуется погружение,

углубление - первичная бороздка, через которую клетки эпибласта начинают погружаться вглубь и в

обе стороны от нее, т.е.

клетки первичной полоски погружаются под наружный листок и располагаются между ним и энтодермой, и формируют мезодерму

третий зародышевый листок)

Критические периоды эмбриогенеза:

- временные периоды наибольшей чувствительности зародыша к различным воздействиям

Выделяют следующие критические периоды:

44.оплодотворение

45.имплантация (7-8 сутки эмбриогенеза)

46.плацентация (3-8 неделя)

47.образования осевых зачатков органов

5.периоды развития органов и систем

Билет 28

Вопрос №1

МОЛОЧНАЯ ЖЕЛЕЗА

- видоизмененные потовые железы кожи

Источники развития:

1.эктодерма – эпителий выводных протоков и концевых отделов

2.мезенхима - строма железы

Строение – орган паренхиматозный – состоит из стромы и паренхимы.

Строма:

1.снаружи орган покрывает соединительно тканная капсула – плотная неоформленная соединительная ткань

2.соединительно тканные прослойки – плотная неоформленная

соединительная ткань - делят железу на дольки – 15-20 шт., (которые в свою очередь распадаются на дольки)

3. внутри долек – прослойки рыхлой соединительной ткани с большим количеством жировых клеток

Паренхима: - представлена эпителием выводных протоков и концевых отделов. Строение паренхимы молочной железы изменяется с возрастом.

До полового созревания:

- железа находится в зачатковом состоянии

После полового созревания:

До беременности железа представлена в основном выводными протоками, концевые отделы – остаются неразвитые – так называемые - «терминальные почки».

При этом происходят циклические изменения молочных желез в ходе овариально-менструального цикла:

1. в период подготовки к овуляции яйцеклетки:

а. под действием эстрогенов выводные протоки удлиняются б. под влиянием прогестерона – «терминальные почки» пролиферируют – образуются альвеолы, железа

увеличивается в размере и уплотняется

2с наступлением менструации - регрессия (обратное развитие) этих изменений – плотность и объем железы уменьшаются

Изменение молочных желез при беременности и лактации:

- полного развития достигает только в период беременности, когда происходит разрастание эпителиальной ткани протоков железы и развитием концевых отделов

Характеристика железы:

1.эпителий многослойный (миоэпителиальные клетки)

2.сложная

3.разветвленная

4.трубчато-альвеолярная

5.смешанный

а. молозиво – выделяется несколько первых дней после родов

-мало жиров, много белка

-«молозивные тельца» - макрофаги, фагоцитировавшие жир и проникшие в просвет альвеол

-Ig класса А

-лейкоциты до 2 тысяч в 1 кубическом мм

б. молоко - замещает молозиво

-больше жиров, меньше белка

-Ig класса А

тип секреции – апокриновый

Секреторные отделы:

Клетки:

1.молочные экзокриноциты (лактоциты):

-в один слой

-кубические или призматические

-развита гранулярная и агранулярнаяЭПС, крупный

комплекс Гольджи

2.миоэпителиальные:

-сокращаются под влиянием окситоцина (передний гипоталамус, задняя доля гипофиза)

Выводные протоки:

I.Внутридольковые

1.млечный альвеолярный проток

-эпителий однослойный кубический

-сохраняются миоэпителиальные клетки

2.млечный проток

-однослойный призматический эпителий

-сохраняются миоэпителиальные клетки

II.Междольковые млечные протоки -

-эпителий становится многорядным

III. Млечные синусытолько в молочных железах

-двуслойный эпителий

-нет миоэпителиальных клеток

-резервуар для накопления молока

IY. Общий выводной проток дольки

-открывается на вершине соска

-многослойный плоский неороговевающий эпителий

-между выводным протоком и кожей расположен

слой висцеральной гладкомышечной ткани – при сокращении препятствует вытеканию молока из синусов

Регуляция железы:

1.Лактотропин (аденогипофиз – ацидофильные эндокриноциты – маммотропоциты) - стимуляция лактоцитов железы к синтезу молока

2.Окситоцин (передний гипоталямус – задний нерогипофиз) – сокращение миоэпителиальных клеток – выброс молока

3.Вегетативная нервная система (симпатический и парасимпатический отделы)

После беременности и окончания лактации железа подвергается обратному развитию с замещением эпителиальных структур концевых отделов жировой тканью.

После наступления климактерического периода молочная железа претерпевает жировую инволюцию, т.е. замещается жировой тканью.

Вопрос №2

Кобобщенной системе крови относят:

собственно кровь и лимфу;

органы кроветворения — красный костный мозг, тимус, селезенку, лимфатические узлы;

лимфоидную ткань некроветворных органов.

Элементы системы крови имеют общие структурно-функциональные особенности, все происходят из мезенхимы, подчиняются общим законам нейрогуморальной регуляции, объединены тесным взаимодействием всех звеньев. Постоянный состав периферической крови поддерживается сбалансированными процессами новообразования и разрушения клеток крови. Поэтому понимание вопросов развития, строения и функции отдельных элементов системы возможно лишь с позиций изучения закономерностей, характеризующих всю систему в целом.

Кровь и лимфа вместе с соединительной тканью образуют т.н. внутреннюю среду организма. Они состоят из плазмы (жидкого межклеточного вещества) и взвешенных в ней форменных элементов. Эти ткани тесно взаимосвязаны, в них происходит постоянный обмен форменными элементами, а также веществами, находящимися в плазме. Лимфоциты рециркулируют из крови в лимфу и из лимфы в кровь. Все клетки крови развиваются из общей полипотентной стволовой клетки крови (СКК) в эмбриогенезе и после рождения.

Кровь

Кровь является циркулирующей по кровеносным сосудам жидкой тканью, состоящей из двух основных компонентов, — плазмы и форменных элементов. Кровь в организме человека составляет, в среднем, около 5 л. Различают кровь, циркулирующую в сосудах, и кровь, депонированную в печени, селезенке, коже.

Плазма составляет 55—60% объема крови, форменные элементы – 40—45%. Отношение объема форменных элементов ко всему объему крови называется гематокритным числом, или гематокритным показателем, - и составляет в норме 0,40 – 0,45. Термингематокрит используют для названия прибора (капилляра) для измерения гематокритного показателя.

Основные функции крови

дыхательная функция (перенос кислорода из легких во все органы и углекислоты из органов в легкие);

трофическая функция (доставка органам питательных веществ);

защитная функция (обеспечение гуморального и клеточного иммунитета, свертывание крови при травмах);

выделительная функция (удаление и транспортировка в почки продуктов обмена веществ);

гомеостатическая функция (поддержание постоянства внутренней среды организма, в том числе иммунного гомеостаза).

Через кровь (и лимфу) транспортируются также гормоны и другие биологически активные вещества. Все это определяет важнейшую роль крови в организме. Анализ крови в клинической практике является одним из основных в постановке диагноза.

Плазма крови

Плазма крови представляет собой жидкое (точнее, коллоидное) межклеточное вещество. Она содержит 90% воды, около 6,6 — 8,5% белков и другие органические и минеральные соединения - промежуточные или конечные продукты обмена веществ, переносимые из одних органов в другие.

К основным белкам плазмы крови относятся альбумины, глобулины и фибриноген.

Альбумины составляют более половины всех белков плазмы, синтезируются в печени. Они обусловливают коллоидно-осмотическое давление крови, выполняют роль транспортных белков для многих веществ, включая гормоны, жирные кислоты, а также токсины и лекарства.

Глобулины – неоднородная группа белков, в которой выделяют альфабета- и гаммафракции. К последней относятся иммунноглобулины, или антитела, - важные элементы иммунной (т.е. защитной) системы организма.

Фибриноген – растворимая форма фибрина, - фибриллярного белка плазмы крови, образующего волокна при повышении свертываемости крови (например, при образовании тромба). Синтезируется фибриноген в печени. Плазма крови, из которой удален фибриноген, называется сывороткой.

Форменные элементы крови

К форменным элементам крови относятся: эритроциты (или красные кровяные тельца), лейкоциты (или белые кровяные тельца), и тромбоциты (или кровяные пластинки). Эритроцитов у человека около 5 x 1012 в 1 литре крови, лейкоцитов – около 6 x 109 (т.е. в 1000 раз меньше), а тромбоцитов – 2,5 x 1011 в 1 литре крови (т.е. в 20 раз меньше, чем эритроцитов).

Популяция клеток крови обновляющаяся, с коротким циклом развития, где большинство зрелых форм являются конечными (погибающими) клетками.

Лейкоциты

Лейкоциты, или белые кровяные клетки, в свежей крови бесцветны, что отличает их от окрашенных эритроцитов. Число их составляет в среднем 4 — 9 x 109 в 1 литре крови (т.е. в 1000 раз меньше, чем эритроцитов). Лейкоциты способны к активным движениям, могут переходить через стенку сосудов в соединительную ткань органов, где они выполняют основные защитные функции. По морфологическим признакам и биологической роли лейкоциты подразделяют на две группы: зернистые лейкоциты, илигранулоциты, и незернистые лейкоциты,

или агранулоциты.

По другой классификации, учитывающей форму ядра лейкоцита, различают лейкоциты с круглым или овальным несегментированным ядром – т.н. мононуклеарныелейкоциты, или мононуклеары, а также лейкоциты с сегментированным ядром, состоящим из нескольких частей – сегментов, - сегментоядерные лейкоциты.

В стандартной гематологической окраске по Романовскому — Гимзе используются два красителя: кислый эозин и основной азур-II. Структуры, окрашиваемые эозином (в розовый цвет) называют эозинофильными, или оксифильными, или же ацидофильными. Структуры, окрашиваемые красителем азур-II (в фиолетово-красный цвет) называют базофильными, или азурофильными.

У зернистых лейкоцитов при окраске азур-II – эозином, в цитоплазме выявляются специфическая зернистость (эозинофильная, базофильная или нейтрофильная) и сегментированные ядра (т.е. все гранулоциты относятся к сегментоядерным лейкоцитам). В соответствии с окраской специфической зернистости различают нейтрофилъные, эозинофильные и базофильные гранулоциты.

Группа незернистых лейкоцитов (лимфоциты и моноциты) характеризуется отсутствием специфической зернистости и несегментированными ядрами. Т.е. все агранулоциты относятся к мононуклеарным лейкоцитам.

Процентное соотношение основных видов лейкоцитов называется лейкоцитарной формулой, или лейкограммой. Общее число лейкоцитов и их процентное соотношение у человека могут изменяться в норме в зависимости от употребляемой пищи, физического и умственного напряжения и при различных заболеваниях. Исследование показателей крови является необходимым для установления диагноза и назначения лечения.

Все лейкоциты способны к активному перемещению путем образования псевдоподий, при этом у них изменяются форма тела и ядра. Они способны проходить между клетками эндотелия сосудов и клетками эпителия, через базальные мембраны и перемещаться по основному веществу соединительной ткани. Направление движения лейкоцитов определяется хемотаксисом под влиянием химических раздражителей — например продуктов распада тканей, бактерий и других факторов.

Лейкоциты выполняют защитные функции, обеспечивая фагоцитоз микробов, инородных веществ, продуктов распада клеток, участвуя в иммунных реакциях.

Гранулоциты (зернистые лейкоциты)

К гранулоцитам относятся нейтрофильные, эозинофильные и базофильные лейкоциты. Они образуются в красном костном мозге, содержат специфическую зернистость в цитоплазме и имеют сегментированные ядра.

Нейтрофильные гранулоциты (или нейтрофилы) — самая многочисленная группа лейкоцитов, составляющая (48—78% от общего числа лейкоцитов). В зрелом сегментоядерном нейтрофиле ядро содержит 3—5 сегментов, соединенных тонкими перемычками. В популяции нейтрофилов крови могут находиться клетки различной степени зрелости —

юные, палочкоядерные и сегментоядерные.Первые два вида — молодые клетки. Юные клетки в норме не превышают 0,5% или отсутствуют, они характеризуются бобовидным ядром. Палочкоядерные составляют 1—6%, имеют несегментированное ядро в форме английской буквы S, изогнутой палочки или подковы. Увеличение в крови количества юных и палочкоядерных форм нейтрофилов (т.н. сдвиг лейкоцитарной формулы влево) свидетельствует о наличии кровопотери или острого воспалительного процесса в организме, сопровождаемых усилением гемопоэза в костном мозге и выходом молодых форм.

Цитоплазма нейтрофилов окрашивается слабооксифильно, в ней видна очень мелкая зернистость розовофиолетового цвета (окрашивается как кислыми, так и основными красками), поэтому называется нейтрофильной или гетерофильной. В поверхностном слое цитоплазмы зернистость и органеллы отсутствуют. Здесь расположены гранулы гликогена, актиновые филаменты и микротрубочки, обеспечивающие образование псевдоподий для движения клетки. Во внутренней части цитоплазмы расположены органеллы общего назначения, видна зернистость.

В нейтрофилах можно различить два типа гранул: специфические и азурофильные, окруженные одинарной мембраной.

Специфические гранулы, более мелкие и многочисленные содержат бактериостатические и бактерицидные вещества — лизоцим и щелочную фосфатазу, а также белок лактоферрин. Лизоцим является ферментом, разрушающим бактериальную стенку. Лактоферрин связывает ионы железа, что способствует склеиванию бактерий. Он также инициирует отрицательную обратную связь, обеспечивая торможение продукции нейтрофилов в костном мозге.

Азурофильные гранулы более крупные, окрашиваются в фиолетово-красный цвет. Они являются первичными лизосомами, содержат лизосомальные ферменты и миелопероксидазу. Миелопероксидаза из перекиси водорода продуцирует молекулярный кислород, обладающий бактерицидным действием. Азурофильные гранулы в процессе дифференцировки нейтрофилов появляются раньше, поэтому называются первичными в отличие от вторичных — специфических.

Основная функция нейтрофилов — фагоцитоз микроорганизмов, поэтому их называют микрофагами. В процессе фагоцитоза бактерий сначала с образующейся фагосомой сливаются специфические гранулы, ферменты которой убивают бактерию, при этом образуется комплекс, состоящий из фагосомы и специфической гранулы. Позднее с этим комплексом сливается лизосома, гидролитические ферменты которой переваривают микроорганизмы. В очаге воспаления убитые бактерии и погибшие нейтрофилы образуют гной.

Фагоцитоз усиливается при опсонизации с помощью иммуноглобулинов или системы комплемента плазмы. Это так называемый рецепторопосредованный фагоцитоз. Если у человека имеются антитела для конкретного вида

бактерий, то бактерия обволакивается этими специфическими антителами. Этот процесс и называется опсонизацией. Затем антитела распознаются рецептором на плазмолемме нейтрофила и присоединяется к нему. Образующееся соединение на поверхности нейтрофила запускает фагоцитоз.

В популяции нейтрофилов здоровых людей фагоцитирующие клетки составляют 69—99%. Этот показатель называют фагоцитарной активностью. Фагоцитарный индекс — другой показатель, которым оценивается число частиц, поглощенных одной клеткой. Для нейтрофилов он равен 12—23.

Продолжительность жизни нейтрофилов составляет 5—9 сут.

Вопрос №3

Плазмолемма. Барьерно-рецепторная и транспортная система клетки

Плазмолемма (plasmalemma), или внешняя клеточная мембрана, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, не только ограничивающая клетку снаружи, но и обеспечивающая ее непосредственную связь с внеклеточной средой, а следовательно, и со всеми веществами и стимулами, воздействующими на клетку.

Химический состав плазмолеммы. Основу плазмолеммы составляет липопротеиновый комплекс. Она имеет толщину около 10 нм и, таким образом, является самой толстой из клеточных мембран.

Снаружи от плазмолеммы располагается надмембранный слой — гликокаликс (glycocalyx). Толщина этого слоя около 3-4 нм, он обнаружен практически у всех животных клеток, но степень его выраженности различна. Гликокаликс представляет собой ассоциированный с плазмолеммой гликопротеиновый комплекс, в состав которого входят различные углеводы. Углеводы образуют длинные, ветвящиеся цепочки полисахаридов, связанные с белками и липидами, входящими в состав плазмолеммы (см. рис. 5). При использовании специальных методов выявления полисахаридов (краситель рутениевый красный) видно, что они образуют как бы чехол поверх плазматической мамбраны.

В гликокаликсе могут располагаться белки, не связанные непосредственно с билипидным слоем. Как правило, это белки-ферменты, участвующие во внеклеточном расщеплении различных веществ, таких как углеводы, белки, жиры и др.

Функции плазмолеммы. Эта мембрана выполняет ряд важнейших клеточных функций, ведущими из которых являются барьерная функция (разграничения цитоплазмы с внешней средой), функции рецепции и транспорта различных веществ как внутрь клетки, так и из нее.

Рецепторные функции связаны с локализацией на плазмолемме специальных структур, участвующих в специфическом «узнавании» химических и физических факторов. Клеточная поверхность обладает большим набором компонентов — рецепторов, определяющих возможность специфических реакций с различными агентами. Рецепторами на поверхности клетки могут служить гликопротеиды и гликолипиды мембран (см. рис. 5). Считается, что такие чувствительные к отдельным веществам участки могут быть разбросаны по всей поверхности клетки или собраны в небольшие зоны. Существуют рецепторы к биологически активным веществам — гормонам, медиаторам, к специфическим антигенам разных клеток или к определенным белкам.

С плазмолеммой связана локализация специфических рецепторов, отвечающих за такие важные процессы, как взаимное распознавание клеток, развитие иммунитета, рецепторов, реагирующих на физические факторы. Так, в плазмолемме светочувствительных клеток животных расположена специальная система фоторецепторных белков (родопсин), с помощью которых световой сигнал превращается в химический, что в свою очередь приводит к генерации электрического импульса.

Транспорт веществ

Выполняя транспортную функцию, плазмолемма обеспечивает диффузию (пассивный перенос) ряда веществ, например воды, ионов, некоторых низкомолекулярных соединений. Другие вещества проникают через мембрану путем активного переноса против градиента концентрации с затратой энергии за счет расщепления АТФ. Так транспортируются многие органические молекулы (сахара, аминокислоты и др.). Эти процессы могут быть сопряжены с транспортом ионов, в них принимают участие специальные белки-переносчики.

Крупные молекулы биополимеров практически не проникают сквозь плазмолемму. В ряде случаев макромолекулы и даже их агрегаты, а часто и крупные частицы попадают внутрь клетки в результате процессов эндоцитоза (рис. 6, А, Б). Эндоцитоз формально разделяют нафагоцитоз (захват и поглощение клеткой крупных частиц, например бактерий или даже фрагментов других клеток), и пиноцитоз (захват макромолекулярных соединений).

Эндоцитоз начинается с сорбции на поверхности плазмолеммы поглощаемых веществ. Связывание их с плазмолеммой определяется наличием на ее поверхности рецепторных молекул. После сорбции веществ на поверхности плазмолемма начинает образовывать сначала небольшие впячивания внутрь клетки. Эти впячивания могут иметь вид еще незамкнутых округлых пузырьков или представлять собой глубокие инвагинации, впячивания внутрь клетки. Затем такие локальные впячивания отшнуровываются от плазмолеммы и в виде пузырьков свободно располагаются под ней.

В дальнейшем эндоцитозные пузырьки могут сливаться друг с другом, расти и в их внутренней полости, кроме поглощенных веществ, начинают обнаруживаться гидролитические ферменты (гидролазы), поступающие сюда из лизосом (см. дальше). Эти ферменты расщепляют биополимеры до мономеров, которые в результате активного транспорта через мембрану пузырька переходят в гиа-лоплазму. Таким образом, поглощенные молекулы внутри мембранных вакуолей, образовавшихся из элементов плазмолеммы, подвергаются внутриклеточному пищеварению.

Плазмолемма принимает участие в выведении веществ из клетки (т.н. экзоцитоз). В этом случае внутриклеточные продукты (белки, мукополисахариды, жировые капли и др.), заключенные в вакуоли или пузырьки и отграниченные от гиалоплазмы мембраной, подходят к плазмолемме. В местах контактов плазмолемма и мембрана вакуоли сливаются и содержимое вакуоли поступает в окружающую среду.

Процесс эндоцитоза и экзоцитоза осуществляется при участии связанной с плазмолеммой системы фибриллярных компонентов цитоплазмы — таких, как микротрубочки и сократимые микрофиламенты. Последние, соединяясь с определенными участками плазмолеммы, могут, изменяя свою длину, втягивать мембрану внутрь клетки, что приводит к отделению от плазмолеммы эндоцитозных вакуолей. Часто, непосредственно примыкая к ней, микрофиламенты образуют сплошной, так называемый кортикальный слой.

Плазмолемма многих клеток животных может образовывать выросты различной структуры. У ряда клеток такие выросты включают в свой состав специальные компоненты цитоплазмы (микротрубочки, микрофибриллы), что приводит к развитию специальных структур — микроворсинок, ресничек, жгутиков.

Наиболее часто встречаются на поверхности многих животных клеток микроворсинки. Эти выросты цитоплазмы, ограниченные плазмолеммой, имеющие форму цилиндра с закругленной вершиной. Микроворсинки характерны для клеток эпителиев, но обнаруживаются и у клеток других тканей. Диаметр микроворсинок около 100 нм. Число и длина их различны у разных типов клеток. Возрастание числа микроворсинок приводит к резкому увеличению площади клеточной поверхности. Это особенно важно для клеток, участвующих во всасывании. Так, в кишечном эпителии на 1 мм2 поверхности насчитывается до 2•10^8 микроворсинок.

Межклеточные соединения (контакты)

Плазмолемма многоклеточных животных организмов принимает активное участие в образовании специальных структур — межклеточных соединений (junctiones intercellulares), обеспечивающих межклеточные взаимодействия. Различают несколько типов таких структур

(рис. 7).

Простое межклеточное соединение, (junctio intercellularis simplex) — сближение плазмолемм соседних клеток на расстояние 15—20 нм. При этом происходит взаимодействие слоев гликокаликса соседних клеток. Разновидностью простого соединения является "пальцевидное", или соединение по типу замка.

Плотное соединение (запирающая зона) (zonula occludens) — зона, где слои двух плазмолемм максимально сближены, здесь происходит как бы слияние участков плазмолемм двух соседних клеток. Роль плотного замыкающего соединения заключается в механическом соединении клеток друг с другом. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает, отграничивает межклеточные щели (и вместе с ними собственно внутреннюю среду организма) от внешней среды.

Часто встречается, особенно в эпителии, особый тип соединения — пятно сцепления, или десмосома (desmosoma). Эта структура представляет собой небольшую площадку, иногда имеющую слоистый вид, диаметром до 0,5 мкм, где между мембранами располагается зона с высокой электронной плотностью. К плазмолемме в зоне десмосомы со стороны цитоплазмы прилегает участок электронноплотного вещества, так что внутренний слой мембраны кажется утолщенным. Под этим утолщением находится область тонких фибрилл, которые могут быть погружены в относительно плотный матрикс. Функциональная роль десмосом заключается главным образом в механической связи между клетками.

Щелевидное соединение, или нексус (nexus), представляет собой область протяженностью 0,5—3 мкм, где плазмолеммы разделены промежутком в 2—3 нм. Со стороны цитоплазмы никаких специальных примембранных структур в данной области не обнаруживается, но в структуре плазмолемм соседних клеток друг против друга располагаются специальные белковые комплексы (коннексоны), которые образуют как бы каналы из одной клетки в другую. Этот тип соединения встречается во всех группах тканей. Функциональная роль щелевидного соединения заключается в переносе ионов и мелких молекул от клетки к клетке. Так, в сердечной мышце возбуждение, в основе которого лежит процесс изменения ионной проницаемости, передается от клетки к клетке через нексус.

Синаптические соединения, или синапсы (synapsis). Этот тип соединений характерен для нервной ткани и встречается в специализированных участках контакта как между двумя нейронами, так и между нейроном и каким-либо иным элементом, входящим в состав рецептора или эффектора (например, нервно-мышечные, нервно-эпителиальные синапсы). Синапсы — участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому.

Строение синапса также рассматривается в теме нервные окончания.

Билет 29

Вопрос № 1

XLVIII.ТРАХЕЯ

Строение стенки:

I.Слизистая –

1.эпителий – респираторный – однослойный многорядный призматический реснитчатый - эктодерма

2.собственная пластинка – РСТ – мезенхима

3.мышечной пластинки – нет

II.Подслизистая основа –

-РСТ, прослойка очень тонкая – не дает рельефа

-железы:

1.многослойные

2.сложные

3.разветвленные

4.трубчато-альвеолярные

5.смешанный, с преобладанием слизистого

6.мерокриновый

III.Волокнисто-хрящевая оболочка

-полукольца – гиалиновый хрящ и надхрящница -

склеротом - мембрана – плотная оформленная соединительная

ткань и гладкомышечные клетки - мезенхима

IY. Наружная оболочка – адвентициальная: - РСТ - мезенхима

Вопрос №2

ЭПИТЕЛИАЛЬНАЯ ТКАНЬ

-осуществляет связь организма с внешней средой и выполняет пограничную или секреторную

функции.

Поэтому по функции выделяют эпителии:

13.покровные

14.железистые

Общие признаки, характерные для эпителиальной ткани:

25.пограничная ткань – на границе внутренней и внешней среды

-где ее искать?

26.построены из эпителиальных клеток – эпителиоцитов,

27.клетки расположены в виде пластов (т.е. клетки лежат близко друг к другу)

28.межклеточное вещество практически отсутствует

51. клетки удерживаются за счет 3 основных типов межклеточных контактов:

-щелевые

-десмосомы

-плотные

52. клетки расположены на базальной мембране электронно-микроскопическая картина «классической» (двухкомпонентной» базальной мембраны

13.ретикулиновые волокна

14.базальная пластинка а. гомогенный электронноплотный слой до 100 мкм толщиной

б. коллаген IY типа (синтезируется эпителиальными клетками) в. гликозаминогликаны

эпителиальные клетки в норме никогда не проникают через базальную мембрану

53.не имеет сосудов, питание осуществляется за счет диффузии через базальную мембрану