Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Билеты гистология одним файлом

.pdf
Скачиваний:
43
Добавлен:
09.03.2021
Размер:
4.62 Mб
Скачать

Плазмоцит

Происхождение – мезенхима, стволовая клетка костного мозга, В-лимфоцит Строение -

-овальная форма

-размеры – 10 мкм

-ядро -

-расположено эксцентрично

-гетерохроматин радиально чередуется с участками эухроматина – «симптом спиц в колесе»

-цитоплазма

-резко базофильная - большое количество рибосом

-светлый участок околоядерной цитоплазмы – не окрашивается базофильно – нет

рибосом, а пластинчатый комплекс и клеточный центр - «светлый дворик» - гранулярная эндоплазматическая сеть - многочисленные цистерны, на внутренней

поверхности которых - полисомы

Функция – гуморальный иммунитет – выработка антител.

Превращение В-лимфоцита в плазмоцит длится около 1 сут., осуществляет функции в течение нескольких дней.

Межклеточное вещество Волокна

Классификация:

25.Коллагеновые

26.Эластические

27.Ретикулярные

Коллагеновые волокна

Происхождение – фибробласты

-синтез белка идет на гранулярной эндоплазматической сети

-сборка – в цистернах комплекса Гольджи

Строение -

-лентовидные тяжи волнообразные

-толщина до 1-3 мкм

-ориентированы в разных направлениях

- не ветвятся

Структурная организация коллагенового волокна:

33. коллаген - из трех полипептидных цепей, толщина – 1,5 нм Типы коллагена: в зависимости от аминокислотного состава (глицин – до 30%, лизин, пролин):

I типа - в соединительной ткани кожи, сухожилий II типа - в хрящах

III типа - в стенке сосудов

IY типа - в базальных мембранах

34.коллагеновая протофибрилла – связанные с помощью водородных связей молекулы коллагена

-поперечно исчерченные

35.коллагеновая фибрилла - склеенные гликозаминогликанами протофибриллы

-пучки толщиной 100 мкм

36.коллагеновое волокно - пучок фибрилл до 1-3 мкм

Функция – мало растяжимы, обеспечивают механическую прочность ткани ( 1 мм волокна выдерживает до 6 кг)

Эластические волокна

Происхождение – фибробласты Строение –

-нет поперечной исчерченности

-выявляются при окраске орсеином

-тонкие – 0,2 мкм

-прямой ход волокон

Структурная организация эластического волокна:

33.эластин -

-много пролина и глицина, нет лизина

-молекулы толщиной – 2,8 нм

34.протофибриллы – водородные связи удерживают молекулы белка, толщина - 3,5 нм

35.фибриллы - гликозаминогликаны склеивают протофибриллы, толщина - 8-10 нм

36.эластическое волокно - 0,2 мкм

Функция – обеспечивают эластичность, т.к. растягиваются.

Ретикулярные волокна

Происхождение – ретикулярные клетки Строение -

-тонкие

-аргирофильные – выявляются при импрегнации серебром

-поперечноисчерченные

-ветвящиеся волокна, образуют сеть

Структурная организация:

25.коллаген III типа

26.фибриллы

27.ретикулярное волокно - в склеивающем веществе много полисахаридов Функция – строма органов кроветворения

Вопрос №3

Периоды эмбрионального (пренатального) развития:

34.начальный - 1 неделя

35.зародышевый – со 2 по 8 неделю

36.плодный – с 9 недели до рождения

Общая продолжительность в среднем - 280 суток (40 недель, 10 лунных мес)

3неделя:

-зародыш трехслойный (на первой неделе – однослойный, на второй – двухслойный, на третей

– трехслойный)

Содержание 3 недели:

1. формируется 4-й внезародышевый орган - аллантоис

4 образуется туловищная складка

3 формируется осевой комплекс зачатков органов

Аллантоис

- образуется пальцевидный вырост стенки желточного мешка в

сторону хориона,

- по нему прорастают сосуды от зародыша к ворсинам хориона –

-третичные ворсины

-их появление обозначает начало формирования плаценты

-с 21 дня уже начинаются сердечные сокращения у эмбриона и циркуляция эмбриональной крови

LXXVIII. Туловищная складка

-на 20-21 сутки происходит:

11.погружение эмбриона в амнион

2. обособление тела зародыша от внезародышевых органов

Результат:

13.зародыш из щитка приобретает цилиндрическую форму тела

14.из материала зародышевого щитка формируется

осевой комплекс зачатков органов с образованием

зародышевых листков:

1.наружный - эктодерма

2.внутренний - энтодерма

3.между ними - мезодерма

Критические периоды эмбриогенеза:

- временные периоды наибольшей чувствительности зародыша к различным воздействиям

Выделяют следующие критические периоды: 76. оплодотворение

77.имплантация (7-8 сутки эмбриогенеза)

78.плацентация (3-8 неделя)

79.образования осевых зачатков органов

5.периоды развития органов и систем

Билет 44

Вопрос №1

При изучении эпителиальных тканей организма в классификации, наряду с покровным эпителием, выделялся железистый эпителий, в который входили железы внешней секреции (экзокринные) и железы внутренней секреции (эндокринные). Указывалось, что эндокринные железы не имеют выводных протоков и выделяют свой секрет (который называется гормон) в кровь или лимфу. По строению железы внутренней секреции делятся на два типа: фолликулярные, - когда эндокриноциты формируют фолликулы, и трабекулярные, - представленные тяжами эндокринных клеток.

Гормоны - это вещества с высокой биологической активностью - регулируют рост и деятельность клеток различных тканей организма.

Для гормонов характерна специфичность действия на конкретные клетки и органы, называемые мишенями. Это обусловлено наличием на клетках-мишенях специфических рецепторов, распознающих и связывающих данный гормон. Будучи связан рецептором, гормон может воздействовать на плазматическую мембрану, на фермент, находящийся в этой мембране, на клеточные органеллы в цитоплазме или же на ядерный (генетический) материал.

Химическая природа гормонов различна. Подавляющее большинство гормонов принадлежит к белкам и производным аминокислот, часть - к стероидам (т.е. производным холестерина).

Эндокринная регуляция является одним из нескольких видов регуляторных воздействий, среди которых выделяют:

аутокринную регуляцию (в пределах одной клетки или клеток одного типа);

паракринную регуляцию (короткодистантную, - на соседние клетки);

эндокринную (опосредованную гормонами, циркулирующими в крови);

нервную регуляцию.

Наряду с термином "эндокринная регуляция", часто используют термин "нейро-гуморальная регуляция", подчеркивая тесную взаимосвязь нервной и эндокринной систем.

Общим для нервных и эндокринных клеток является выработка гуморальных регулирующих факторов. Эндокринные клетки синтезируют гормоны и выделяют их в кровь, а нейроны синтезируют нейромедиаторы (большинство из которых является нейроаминами): норадреналин, серотинин и другие, выделяющиеся в синаптические щели. В гипоталамусе находятся секреторные нейроны, совмещающие свойства нервных и эндокринных клеток. Они обладают способностью образовывать как нейроамины, так и олигопептидные гормоны. Выработка гормонов эндокринными органами регулируется нервной системой.

Классификация эндокринных структур

I. Центральные регуляторные образования эндокринной системы: o гипоталамус (нейросекреторные ядра);

o гипофиз (аденогипофиз и нейрогипофиз); o эпифиз.

II. Периферические эндокринные железы: o щитовидная железа;

o околощитовидные железы;

o надпочечники (корковое и мозговое вещество).

III. Органы, объединяющие эндокринные и неэндокринные функции: o гонады (половые железы - семенники и яичники);

o

плацента;

o

поджелудочная железа.

IV. Одиночные гормонпродуцирующие клетки, апудоциты.

Как в любой системе, центральные и периферические ее звенья имеют прямые и обратные связи. Гормоны, вырабатываемые в периферических эндокринных образованиях, могут оказывать регулирующее влияние на деятельность центральных звеньев.

Одной из особенностей строения эндокринных органов является обилие в них сосудов, особенно гемокапилляров синусоидного типа и лимфокапилляров, в которые поступают секретируемые гормоны.

Околощитовидные (паращитовидные) железы

Околощитовидные железы (обычно в количестве четырех) расположены на задней поверхности щитовидной железы и отделены от нее капсулой.

Функциональное значение околощитовидных желез заключается в регуляцииметаболизма кальция. Они вырабатывают белковый гормон паратирин, или паратгормон, который стимулирует резорбцию кости остеокластами, повышая уровень кальция в крови. Сами остеокласты не имеют рецепторов к паратгормону, - его действие опосредовано другими клетками костной ткани - остеобластами.

Кроме этого паратгормон уменьшает выведение кальция почками, а также усиливает синтез метаболита витамина D, который, в свою очередь, повышает всасывание кальция в кишечнике.

Развитие. Околощитовидные железы закладываются у зародыша как выступы из эпителия III-ей и IV-ой пар жаберных карманов глоточной кишки. Эти выступы отшнуровываются, и каждый из них развивается в отдельную околощитовидную железу, причем из IV пары жаберных карманов развивается верхняя пара желез, а из III пары развивается нижняя пара околощитовидных желез, а также вилочковая железа - тимус.

LXXIX. Строение околощитовидной железы

Каждая околощитовидная железа окружена тонкой соединительнотканной капсулой. Ее паренхима представлена трабекулами - эпителиальными тяжами эндокринных клеток - паратироцитов. Трабекулы разделены тонкими прослойками рыхлой соединительной ткани с многочисленными капиллярами. Хотя между паратироцитами хорошо развиты межклеточные щели, соседние клетки связаны интердигитациями и десмосомами. Различают два типа клеток: главные паратироциты и оксифильные паратироциты.

Главные клетки секретируют паратирин, они преобладают в паренхиме железы, имеют небольшие размеры и полигональную форму. В периферических зонах цитоплазма базофильна, где рассеяны скопления свободных рибосом и секреторные гранулы. При усилении секреторной активности паращитовидных желез главные клетки увеличиваются в объеме. Среди главных паратироцитов также различают два типа: светлые и темные. В цитоплазме светлых клеток встречаются включения гликогена. Считают, что светлые клетки - это неактивные, а темные клетки - функционально активные паратироциты. Главные клетки осуществляют биосинтез и выделение паратгормона.

Второй тип клеток - оксифильные паратироциты. Они малочисленны, располагаются поодиночке или группами. Они значительно крупнее, чем главные паратироциты. В цитоплазме видны оксифильные гранулы, огромное количество митохондрий при слабом развитии других органелл. Их рассматривают как стареющие формы главных клеток. У детей эти клетки единичны, с возрастом их число возрастает.

На секреторную активность околощитовидных желез не оказывают влияния гипофизарные гормоны. Околощитовидная железа по принципу обратной связи быстро реагирует на малейшие колебания в уровне кальция в крови. Ее деятельность усиливается при гипокальциемии и ослабляется при гиперкальциемии. Паратироциты обладают рецепторами, способными непосредственно воспринимать прямые влияния ионов кальция на них.

Иннервация. Околощитовидные железы получают обильную симпатическую и парасимпатическую иннервацию. Безмиелиновые волокна заканчиваются терминалями в виде пуговок или колечек между паратироцитами. Вокруг оксифильных клеток нервные терминали принимают вид корзиночек. Встречаются также инкапсулированные рецепторы. Влияние поступающих нервных импульсов ограничивается сосудодвигательными эффектами.

Возрастные изменения. У новорожденных и детей младшего возраста в паренхиме околощитовидных желез обнаруживаются только главные клетки. Оксифильные клетки появляются не ранее 5-7 лет, к этому времени их количество быстро нарастает. После 20-25 лет постепенно прогрессирует накопление жировых клеток.

Вопрос №2

Кобобщенной системе крови относят:

собственно кровь и лимфу;

органы кроветворения — красный костный мозг, тимус, селезенку, лимфатические узлы;

лимфоидную ткань некроветворных органов.

Элементы системы крови имеют общие структурно-функциональные особенности, все происходят из мезенхимы, подчиняются общим законам нейрогуморальной регуляции, объединены тесным взаимодействием всех звеньев. Постоянный состав периферической крови поддерживается сбалансированными процессами новообразования и разрушения клеток крови.

Поэтому понимание вопросов развития, строения и функции отдельных элементов системы возможно лишь с позиций изучения закономерностей, характеризующих всю систему в целом.

Кровь и лимфа вместе с соединительной тканью образуют т.н. внутреннюю среду организма. Они состоят из плазмы (жидкого межклеточного вещества) и взвешенных в ней форменных элементов. Эти ткани тесно взаимосвязаны, в них происходит постоянный обмен форменными элементами, а также веществами, находящимися в плазме. Лимфоциты рециркулируют из крови в лимфу и из лимфы в кровь. Все клетки крови развиваются из общей полипотентной стволовой клетки крови (СКК) в эмбриогенезе и после рождения.

Кровь

Кровь является циркулирующей по кровеносным сосудам жидкой тканью, состоящей из двух основных компонентов, — плазмы и форменных элементов. Кровь в организме человека составляет, в среднем, около 5 л. Различают кровь, циркулирующую в сосудах, и кровь, депонированную в печени, селезенке, коже.

Плазма составляет 55—60% объема крови, форменные элементы – 40—45%. Отношение объема форменных элементов ко всему объему крови называется гематокритным числом, или гематокритным показателем, - и составляет в норме 0,40 – 0,45. Термингематокрит используют для названия прибора (капилляра) для измерения гематокритного показателя.

Основные функции крови

дыхательная функция (перенос кислорода из легких во все органы и углекислоты из органов в легкие);

трофическая функция (доставка органам питательных веществ);

защитная функция (обеспечение гуморального и клеточного иммунитета, свертывание крови при травмах);

выделительная функция (удаление и транспортировка в почки продуктов обмена веществ);

гомеостатическая функция (поддержание постоянства внутренней среды организма, в том числе иммунного гомеостаза).

Через кровь (и лимфу) транспортируются также гормоны и другие биологически активные вещества. Все это определяет важнейшую роль крови в организме. Анализ крови в клинической практике является одним из основных в постановке диагноза.

Плазма крови

Плазма крови представляет собой жидкое (точнее, коллоидное) межклеточное вещество. Она содержит 90% воды, около 6,6 — 8,5% белков и другие органические и минеральные соединения - промежуточные или конечные продукты обмена веществ, переносимые из одних органов в другие.

К основным белкам плазмы крови относятся альбумины, глобулины и фибриноген.

Альбумины составляют более половины всех белков плазмы, синтезируются в печени. Они обусловливают коллоидно-осмотическое давление крови, выполняют роль транспортных белков для многих веществ, включая гормоны, жирные кислоты, а также токсины и лекарства.

Глобулины – неоднородная группа белков, в которой выделяют альфабета- и гаммафракции. К последней относятся иммунноглобулины, или антитела, - важные элементы иммунной (т.е. защитной) системы организма.

Фибриноген – растворимая форма фибрина, - фибриллярного белка плазмы крови, образующего волокна при повышении свертываемости крови (например, при образовании тромба). Синтезируется фибриноген в печени. Плазма крови, из которой удален фибриноген, называется сывороткой.

Форменные элементы крови

К форменным элементам крови относятся: эритроциты (или красные кровяные тельца), лейкоциты (или белые кровяные тельца), и тромбоциты (или кровяные пластинки). Эритроцитов у человека около 5 x 1012 в 1 литре крови, лейкоцитов – около 6 x 109 (т.е. в 1000 раз меньше), а тромбоцитов – 2,5 x 1011 в 1 литре крови (т.е. в 20 раз меньше, чем эритроцитов).

Популяция клеток крови обновляющаяся, с коротким циклом развития, где большинство зрелых форм являются конечными (погибающими) клетками.

Лейкоциты

Лейкоциты, или белые кровяные клетки, в свежей крови бесцветны, что отличает их от окрашенных эритроцитов. Число их составляет в среднем 4 — 9 x 109 в 1 литре крови (т.е. в 1000

раз меньше, чем эритроцитов). Лейкоциты способны к активным движениям, могут переходить через стенку сосудов в соединительную ткань органов, где они выполняют основные защитные функции. По морфологическим признакам и биологической роли лейкоциты подразделяют на две группы: зернистые лейкоциты, илигранулоциты, и незернистые лейкоциты,

или агранулоциты.

По другой классификации, учитывающей форму ядра лейкоцита, различают лейкоциты с круглым или овальным несегментированным ядром – т.н. мононуклеарныелейкоциты, или мононуклеары, а также лейкоциты с сегментированным ядром, состоящим из нескольких частей – сегментов, - сегментоядерные лейкоциты.

В стандартной гематологической окраске по Романовскому — Гимзе используются два красителя: кислый эозин и основной азур-II. Структуры, окрашиваемые эозином (в розовый цвет) называют эозинофильными, или оксифильными, или же ацидофильными. Структуры, окрашиваемые красителем азур-II (в фиолетово-красный цвет) называют базофильными, или азурофильными.

У зернистых лейкоцитов при окраске азур-II – эозином, в цитоплазме выявляются специфическая зернистость (эозинофильная, базофильная или нейтрофильная) и сегментированные ядра (т.е. все гранулоциты относятся к сегментоядерным лейкоцитам). В соответствии с окраской специфической зернистости различают нейтрофилъные, эозинофильные и базофильные гранулоциты.

Группа незернистых лейкоцитов (лимфоциты и моноциты) характеризуется отсутствием специфической зернистости и несегментированными ядрами. Т.е. все агранулоциты относятся к мононуклеарным лейкоцитам.

Процентное соотношение основных видов лейкоцитов называется лейкоцитарной формулой, или лейкограммой. Общее число лейкоцитов и их процентное соотношение у человека могут изменяться в норме в зависимости от употребляемой пищи, физического и умственного напряжения и при различных заболеваниях. Исследование показателей крови является необходимым для установления диагноза и назначения лечения.

Все лейкоциты способны к активному перемещению путем образования псевдоподий, при этом у них изменяются форма тела и ядра. Они способны проходить между клетками эндотелия сосудов и клетками эпителия, через базальные мембраны и перемещаться по основному веществу соединительной ткани. Направление движения лейкоцитов определяется хемотаксисом под влиянием химических раздражителей — например продуктов распада тканей, бактерий и других факторов.

Лейкоциты выполняют защитные функции, обеспечивая фагоцитоз микробов, инородных веществ, продуктов распада клеток, участвуя в иммунных реакциях.

Гранулоциты (зернистые лейкоциты)

К гранулоцитам относятся нейтрофильные, эозинофильные и базофильные лейкоциты. Они образуются в красном костном мозге, содержат специфическую зернистость в цитоплазме и имеют сегментированные ядра.

Эозинофильные гранулоциты (или эозинофилы). Количество эозинофилов в крови составляет от 0,5 до 5 % от общего числа лейкоцитов. Ядро эозинофилов имеет, как правило, 2 сегмента, соединенных перемычкой. В цитоплазме расположены органеллы общего назначения и гранулы. Среди гранул различают азурофильные (первичные) и эозинофильные (вторичные), являющиеся модифицированными лизосомами.

Специфические эозинофильные гранулы заполняют почти всю цитоплазму. Характерно наличие в центре гранулы кристаллоида, который содержит т.н. главный основной белок, богатый аргинином, лизосомные гидролитические ферменты, пероксидазу, эозинофильный катионный белок, а также гистаминазу.

Главный основной белок эозинофильных гранул участвует в антипаразитарной функции эозинофилов. Гистаминаза – фермент разрушающий гистамин, - один из основных медиаторов воспаления.

Эозинофилы являются подвижными клетками и способны к фагоцитозу, однако их фагоцитарная активность ниже, чем у нейтрофилов.

Эозинофилы обладают положительным хемотаксисом к гистамину, выделяемому тучными клетками соединительной ткани при воспалении и аллергических реакциях, к лимфокинам, выделяемым Т-лимфоцитами, и иммунным комплексам, состоящим из антигенов и антител.

Установлена роль эозинофилов в реакциях на чужеродный белок, в аллергических и анафилактических реакциях, где они участвуют в метаболизме гистамина, вырабатываемого тучными клетками соединительной ткани. Гистамин повышает проницаемость сосудов, вызывает развитие отека тканей; в больших дозах может вызвать шок со смертельным исходом.

Эозинофилы способствуют снижению содержания гистамина в тканях различными путями. Они разрушают гистамин с помощью фермента гистаминазы, фагоцитируют гистаминсодержащие

гранулы тучных клеток, адсорбируют гистамин на плазмолемме, связывая его с помощью рецепторов, и, наконец, вырабатывают фактор, тормозящий дегрануляцию и освобождение гистамина из тучных клеток.

Специфической функцией эозинофилов является антипаразитарная. При паразитарных заболеваниях (гельминтозы, шистосомоз и др.) наблюдается резкое увеличение числа эозинофилов. Эозинофилы убивают личинки паразитов, поступившие в кровь или органы (например, в слизистую оболочку кишки). Они привлекаются в очаги воспаления хемотаксическими факторами и прилипают к паразитам благодаря наличию на них обволакивающих компонентов комплемента. При этом происходят дегрануляция эозинофилов и выделение главного основного белка, оказывающего антипаразитарное действие.

Эозинофилы находятся в периферической крови менее 12 ч и потом переходят в ткани. Их мишенями являются такие органы, как кожа, легкие и желудочнокишечный тракт. Изменение содержания эозинофилов может наблюдаться под действием медиаторов и гормонов: например, при стресс-реакции отмечается падение числа эозинофилов в крови, обусловленное увеличением содержания гормонов надпочечников.

Вопрос №3

— это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клеткахэукариот, причем в клетках прокариот обнаружены гомологи всех белков цитоскелета эукариот. Цитоскелет - динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление.

Цитоскелет образован белками, выделяют несколько основных систем, называемых либо по основным структурным элементам, заметным при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), либо по основным белкам, входящим в их состав (актин-миозиновая система, кератины, тубулин-динеиновая система).

Пр м жу чны ф ам н ы (ПФ) — нитевидные структуры из особых белков, один из трех основных компонентов цитоскелета клеток эукариот. Содержатся как в цитоплазме, так и в ядре большинства эукариотических клеток. Средний диаметр ПФ — около 10 нм (9-11 нм), меньше, чем у микротрубочек (около 25 нм) и больше, чем у актиновых микрофиламентов (5-9 нм). Название получили из-за того, что толщина цитоскелетных структур, состоящих из ПФ, занимала промежуточное положение между толщиной миозиновых филаментов и микротрубочек[1]. В ядре известен только один тип ПФ — ламиновых, остальные типы — цитоплазматические.

Доменная структура белковых молекул ПФ довольно консервативна. Полипептид обычно имеет два глобулярных домена на N- и C-концах, которые соединены протяженным суперскрученным палочковидным доменом, состоящим из альфа-спиралей. Основной строительный блок филамента — димер, а не мономер. Он образован двумя полипептидными цепями, обычно двух разных белков, которые взаимодействуют между собой своими палочковидными доменами, образующими двойную суперскрученную спираль. Цитоплазматические ПФ образованы из таких димеров, образующих неполярные нити, толщиной в один блок. Отсутствие полярности у ПФ обусловлено антипараллельной ориентацией димеров в тетрамере. Из них далее образуются более сложные структуры, в которых ПФ могут уплотняться, вследствие чего имеют непостоянный диаметр.

В отличие от актина и тубулина белки ПФ не имеют сайта сязывания нуклеозидтрифосфатов.

Билет 45

Вопрос №1

При изучении эпителиальных тканей организма в классификации, наряду с покровным эпителием, выделялся железистый эпителий, в который входили железы внешней секреции (экзокринные) и железы внутренней секреции (эндокринные). Указывалось, что эндокринные железы не имеют выводных протоков и выделяют свой секрет (который называется гормон) в кровь или лимфу. По строению железы внутренней секреции делятся на два типа: фолликулярные, - когда эндокриноциты формируют фолликулы, и трабекулярные, - представленные тяжами эндокринных клеток.

Гормоны - это вещества с высокой биологической активностью - регулируют рост и деятельность клеток различных тканей организма.

Для гормонов характерна специфичность действия на конкретные клетки и органы, называемые мишенями. Это обусловлено наличием на клетках-мишенях специфических рецепторов, распознающих и связывающих данный гормон. Будучи связан рецептором, гормон может воздействовать на плазматическую мембрану, на фермент, находящийся в этой мембране, на клеточные органеллы в цитоплазме или же на ядерный (генетический) материал.

Химическая природа гормонов различна. Подавляющее большинство гормонов принадлежит к белкам и производным аминокислот, часть - к стероидам (т.е. производным холестерина).

Эндокринная регуляция является одним из нескольких видов регуляторных воздействий, среди которых выделяют:

аутокринную регуляцию (в пределах одной клетки или клеток одного типа);

паракринную регуляцию (короткодистантную, - на соседние клетки);

эндокринную (опосредованную гормонами, циркулирующими в крови);

нервную регуляцию.

Наряду с термином "эндокринная регуляция", часто используют термин "нейро-гуморальная регуляция", подчеркивая тесную взаимосвязь нервной и эндокринной систем.

Общим для нервных и эндокринных клеток является выработка гуморальных регулирующих факторов. Эндокринные клетки синтезируют гормоны и выделяют их в кровь, а нейроны синтезируют нейромедиаторы (большинство из которых является нейроаминами): норадреналин, серотинин и другие, выделяющиеся в синаптические щели. В гипоталамусе находятся секреторные нейроны, совмещающие свойства нервных и эндокринных клеток. Они обладают способностью образовывать как нейроамины, так и олигопептидные гормоны. Выработка гормонов эндокринными органами регулируется нервной системой.

Классификация эндокринных структур

I. Центральные регуляторные образования эндокринной системы: o гипоталамус (нейросекреторные ядра);

o гипофиз (аденогипофиз и нейрогипофиз); o эпифиз.

II. Периферические эндокринные железы: o щитовидная железа;

o околощитовидные железы;

o надпочечники (корковое и мозговое вещество).

III. Органы, объединяющие эндокринные и неэндокринные функции: o гонады (половые железы - семенники и яичники);

o

плацента;

o

поджелудочная железа.

IV. Одиночные гормонпродуцирующие клетки, апудоциты.

Как в любой системе, центральные и периферические ее звенья имеют прямые и обратные связи. Гормоны, вырабатываемые в периферических эндокринных образованиях, могут оказывать регулирующее влияние на деятельность центральных звеньев.

Одной из особенностей строения эндокринных органов является обилие в них сосудов, особенно гемокапилляров синусоидного типа и лимфокапилляров, в которые поступают секретируемые гормоны.

Надпочечники

Надпочечники - это эндокринные железы, которые состоят из двух частей - коркового и мозгового вещества, обладающих различным происхождением, структурой и функцией.

Снаружи надпочечники покрыты соединительнотканной капсулой, в которой различаются два слоя - наружный (плотный) и внутренний (более рыхлый). От капсулы в корковое вещество отходят тонкие трабекулы, несущие сосуды и нервы.

Корковое вещество надпочечников занимает большую часть железы и выделяеткортикостероиды - группу гормонов, влияющих на различные виды обмена, иммунную систему, течение воспалительных процессов. Функция коры надпочечников контролируется адренокортикотропным гормоном гипофиза (АКТГ), а также гормонами почек - ренинангиотензиновой системой.

В мозговом веществе продуцируются катехоламины (адреналин, или эпинефрин, и норадреналин, или норэпинефрин), которые влияют на быстроту сердечных сокращений, сокращение гладких мышц и метаболизм углеводов и липидов.

Развитие надпочечников проходит в несколько этапов.

Закладка корковой части появляется на 5-й неделе внутриутробного периода в виде утолщений целомического эпителия. Эти эпителиальные утолщения собираются в компактное интерреналовое тело, - зачаток первичной (фетальной) коры надпочечников. С 10-й недели внутриутробного периода клеточный состав первичной коры постепенно замещается и дает начало дефинитивной коре надпочечников, окончательное формирование которой происходит в течение первого года жизни.

В фетальной коре надпочечников синтезируются главным образом глюкокортикоиды - предшественники женских половых гормонов плаценты.

Из того же целомического эпителия, из которого возникает интерреналовое тело, закладываются также половые валики - зачатки гонад, что обусловливает их функциональную взаимосвязь и близость химической природы их стероидных гормонов.

Мозговая часть надпочечников закладывается у зародыша человека на 6-7-й неделе внутриутробного периода. Из общего зачатка симпатических ганглиев, располагающегося в аортальной области, выселяются нейробласты. Эти нейробласты внедряются в интерреналовое тело, пролиферируют и дают начало мозговой части надпочечников. Следовательно, железистые клетки мозговой части надпочечников должны рассматриваться как нейроэндокринные.

Корковое вещество надпочечников

Корковые эндокриноциты образуют эпителиальные тяжи, ориентированные перпендикулярно к поверхности надпочечника. Промежутки между эпителиальными тяжами заполнены рыхлой соединительной тканью, по которой проходят кровеносные капилляры и нервные волокна, оплетающие тяжи.

Под соединительнотканной капсулой имеется тонкая прослойка мелких эпителиальных клеток, размножением которых обеспечивается регенерация коры и создается возможность возникновения добавочных интерреналовых телец, иногда обнаруживаемых на поверхности надпочечников и нередко оказывающихся источниками опухолей (в том числе и злокачественных).

В коре надпочечника имеются три основные зоны: клубочковая, пучковая и сетчатая. В них синтезируются и выделяются различные группы кортикостероидов - соответственно: минералокортикоиды, глюкокортикоиды и половые стероиды. Исходным субстратом для синтеза всех этих гормонов служит холестерин, извлекаемый клетками из крови. Стероидные гормоны не запасаются в клетках, а образуются и выделяются непрерывно.

Поверхностная, клубочковая зона образована мелкими корковыми эндокриноцитами, которые формируют округлые арки - "клубочки".

В клубочковой зоне вырабатываются минералокортикоиды, главным из которых является альдостерон.

Основная функция минералокортикоидов - поддержание гомеостаза электролитов в организме. Минералокортикоиды влияют на реабсорбцию и экскрецию ионов в почечных канальцах. В частности, альдостерон увеличивает реабсорбцию ионов натрия, хлора, бикарбоната и усиливает экскрецию ионов калия и водорода.

На синтез и секрецию альдостерона влияет ряд факторов. Гормон эпифиза адреногломерулотропин стимулирует образование альдостерона. Стимулирующее влияние на синтез и секрецию альдостерона оказывают компоненты ренин-ангиотензиновой системы, а тормозящее - натрийуретические факторы. Простагландины могут оказывать как стимулирующее, так и тормозящее влияние.

При гиперсекреции альдостерона происходят задержка натрия в организме, обусловливающая повышение артериального давления, и потеря калия, сопровождающаяся мышечной слабостью.