- •1) Методы принятия оптимальных решений. Математические модели операции: детерминированный случай, оптимизация решений в условиях неопределенности.
- •1) Детерминированный случай
- •2) Оптимизация решений в условиях неопределенности
- •2) Методы принятия оптимальных решений. Оценка операции по нескольким показателям.
- •3) Оценка операции по нескольким показателям.
- •3) Основная задача линейного программирования (озлп). Допустимые решения и оптимальное решение задачи лп.
- •4) Геометрическая интерпретация озлп.
- •Анализ положения l относительно одр.
- •Дадим геометрическую интерпретацию поиска оптимального решения.
- •Тогда (x1*, x2*, …, xn*) – оптимальное решение
- •Некоторые выводы
- •5) Задача лп с ограничениями-неравенствами. Переход от нее к основной задаче.
- •6) Симплекс-метод решения задачи лп.
- •7) Табличный алгоритм замены переменных.
- •8. Отыскание опорного решения задачи лп на основе табличного алгоритма замены переменных.
- •9. Отыскание оптимального решения задачи лп на основе табличного алгоритма замены переменных.
- •10. Метод динамического программирования (дп). Алгоритм решения задач управления состоянием организма в биотехнических системах. Основное рекуррентное уравнение дп.
- •11. Управление переходом организма из исходного в конечное состояние методом дп: использование ориентированного графа.
- •12. Управление переходом организма из исходного состояния в конечное в условиях неопределенности.
- •13. Игровые методы обоснования решений. Основные понятия теории игр. Платежная матрица.
- •14. Нижняя и верхняя цена игры. Принцип минимакса. Решение игры в чистых стратегиях.
- •15. Решение игры в смешанных стратегиях.
- •16. Игры 2х2 и их решение.
- •17. Геометрическая интерпретация решений игры 2х2.
- •18. Решение игр 2хn.
- •19. Решение игр mх2.
- •20. Решение игр mxn.
- •3.2. Элементы теории статистических решений
12. Управление переходом организма из исходного состояния в конечное в условиях неопределенности.
До сих пор мы рассматривали детерминированную модель (аналитическое представление закономерности, операции и т.п., при которых для данной совокупности входных значений на выходе системы может быть получен единственный результат.) динамического программирования. В реальной жизни как на состояние системы, так и на целевую функцию влияют случайные факторы, и поведение системы зависит не только от начального состояния S0 и выбранного управления x, но и от случайности.
Рассмотрим стохастическую (т.е. случайную) модель задачи о кратчайшем пути на ациклической сети. Допустим существование в системе условных вероятностей P (Si / Si−1 , xi ) того, что на i-м шаге управления система перейдет в состояние Si при условии, что до этого она находилась в Si−1 и было применено управление xi . Это условие представляет собой допущение о марковском свойстве системы, согласно которому вероятность перехода системы в какое-либо состояние Si зависит только от состояния Si−1 , из которого совершается переход, и от применяемого управления xi , но никак не зависит от предыстории системы, предшествующей ее переходу в Si−1.
Таким образом, теперь управляющее воздействие xi на 1-м шаге управления может лишь изменить вероятности перехода из данного состояния Si−1 в другие состояния Si . Теперь, находясь в каком-либо состоянии и применяя некоторое управление, можно говорить только о средних затратах времени достижения конечного состояния, которые вычисляются как взвешенные по соответствующим вероятностям затраты, рассмотренные по всем возможным из данного состояния траекториям. В этом случае, очевидно, задача заключается в нахождении такого множества оптимальных управлений (по одному для каждого состояния), которое дает минимальное среднее значение времени перехода из S0 в Sm .
Применение принципа оптимальности к таким задачам приводит к стохастической модели динамического программирования. Пусть обозначает конкретное состояние системы, в которое она переходит на i-м шаге, – временные затраты на перевод организма в состояние на i-м шаге из состояния .
Рис. 4
Допустим, что для части сети (рис. 4) известны условные минимальные средние временные затраты i+1 (Si ) на достижение конечного состояния из Si (Si ∈{ , }). На рис. 4 через p1, p2, …, pn обозначены условные вероятности перехода
pj = P ( | Si−1, xi ), причем
Если, например, находясь в состоянии Si−1 , мы применяем управление xi , то средние затраты времени i (Si−1 | xi ) на достижение конечного состояния из Si−1 равны
Так как вариантов управления на i-м шаге может быть несколько, т. е. xi может принимать разные значения xi ∈{ , }, выберем то из них, при котором i (Si−1|xi) становится минимальным. При этом стохастическое обобщение основного рекуррентного уравнения (см. в предыдущем вопросе его) имеет вид
или в развернутой форме
Поскольку применяются условные вероятности, то
Далее следуют примеры:
Пример 2.3. на странице 48 в печатной методе и 49 в электронной
Пример 2.4. на странице 51 в печатной методе и 52 в электронной