- •2. Статистический и термодинамический методы изучения систем многих частиц.
- •3. Массы атомов и молекул. Количество вещества.
- •4. Молекулярные силы
- •5. Агрегатные состояния вещества. Характер теплового движения в этих состояниях. Особенности теплового движения в различных агрегатных состояниях вещества.
- •6. Понятие вероятности. (Частотное и априорное определения вероятности события.)
- •7. Некоторые теоремы теории вероятности. (Теоремы сложения и умножения вероятностей. Условие нормировки вероятностей.)
- •8. Интегральная функция распределения. Случайные величины. Интегральная функция распределения случайной величины и её свойства.
- •9. Плотность вероятности и её свойства.
- •10. Средние значения случайных величин. (математическое ожидание). Среднее по времени и среднее по ансамблю. Эргодическая гипотеза (без доказательства).
- •11. Дисперсия и её свойства.
- •15. Модель идеального газа.
- •16. Равновесные состояния и процессы. Термодинамическое равновесие. Равновесные процессы.
- •17. Распределения молекул газа по направлениям движения в состоянии равновесия.
- •18. Число ударов молекул о стенку сосуда (о единицу площади за единицу времени).
- •19. Основное уравнение молекулярно-кинетической теории газов для давления. (Давление иг с точки зрения мкт.)
- •20. Температура и ее измерение. Эмпирические (Опытные) температурные шкалы. Идеально-газовая шкала температур.
- •21. Температура – мера средней кинетической энергии поступательного движения молекул. Молекулярно-кинетический смысл температуры.
- •22. Уравнение Менделеева – Клапейрона (Уравнение состояния идеального газа). Законы идеального газа (следствия из этого уравнения).
- •25. Распределение Максвелла для относительных скоростей (формула).
- •26. Экспериментальная проверка распределения Максвелла (опыт Штерна, опыт Ламерта).
- •27. Распределение Больцмана. Идеальный газ во внешнем поле сил. Барометрическая формула.
- •28. Распределение Максвелла-Больцмана
- •29. Понятие об отрицательных абсолютных температурах.
- •30. Флуктуация. Зависимость относительной флуктуации от числа частиц в системе. Роль флуктуации в науке и технике.
- •31. Теорема о равномерном распределении энергии теплового движения по степеням свободы. Число степеней свободы молекул. Средняя энергия теплового движения молекул газа.
- •32. Броуновское движение. Проверка распределения Больцмана в опытах с броуновским движением. Формула Эйнштейна для описания броуновского движения.
- •33. Внутренняя энергия. Термодинамический метод. Выражение для внутренней энергии идеального газа.
- •34. Работа и количество тепла. Первый закон термодинамики. Работа при равновесном и неравновесном изменении объема системы.
- •35. Теплоемкость. Применение 1-го начала термодинамики для вычисления теплоемкости вещества.
- •36. Теплоемкость молекулярного водорода (экспериментальная). Классическая теория теплоемкостей идеального газа. Ограниченность теоремы о равномерном распределении энергии по степеням свободы.
- •38. Адиабатный процесс. Уравнение адиабаты идеального газа. Работа идеального газа при адиабатическом изменении его объема.
- •39. Политропные процессы. Уравнение политропы идеального газа. Работа идеального газа при политропическом процессе.
- •40. Обратимые и необратимые процессы.
- •41. Круговые термодинамические процессы и циклы. Тепловые и холодильные машины. Работа при круговом процессе. Первое начало термодинамики в применении к круговому процессу.
- •42. Второе начало термодинамики в формулировках Кельвина и Клаузиуса, их эквивалентность. Недостаточность первое начала термодинамики для однозначного описания процессов, происходящих в природе.
- •43. Цикл Карно и его кпд.
- •44. Теоремы Карно. Кпд цикла Карно – верхний предел кпд тепловых машин.
- •45. Равенство Клаузиуса. Энтропия. Свойства энтропии. Математическое выражение второго начала термодинамики для обратимых процессов. Постоянство энтропии при обратимых процессах в замкнутой системе.
- •46. Основное уравнение термодинамики для обратимых процессов. Энтропия идеального газа.
- •48. Свободная энергия системы.
- •51. Уравнение Клапейрона-Клаузиуса (дифференциальное).
- •52. Уравнение Ван-дер-Ваальса – Уравнение состояния неидеальных газов. Опытное определение констант уравнения Ван-дер-Ваальса.
- •54. Внутренняя энергия газа Ван-дер-Ваальса. Адиабатическое расширения газа ВдВ в пустоту.
- •55. Эффект Джоуля-Томсона. Общая термодинамическая теория дифференциального эффекта Джоуля-Томсона.
- •56. Эффект Джоуля-Томсона в газе Ван-дер-Ваальса.
- •57. Сжижение газов. Получение низких и сверхнизких температур. Метод магнитного охлаждения.
- •58. Среднее число столкновений и средняя длина свободного пробега молекул. Эффективный диаметр газовых молекул. Понятие об эффективном сечении процесса столкновения частиц.
- •59. Общее уравнение явлений переноса. Явления переноса. Общее уравнение явлений переноса в газах.
- •60. Теплопроводность. Уравнение теплопроводности. Основной закон теплопроводности – закон Фурье. Вычисление и экспериментальное определение коэффициента теплопроводности.
- •61. Внутреннее трение (вязкость) газов. Основной закон вязкости – закон Ньютона. Вычисление (и экспериментальное определение) коэффициента вязкости.
- •62. Диффузия. Основной закон диффузии – закон Фика. Вычисление коэффициента самодиффузии газов.
- •63. Некоторые свойства разреженных газов. Физические явления в сильно разреженных газах. Определение вакуума. Течение и равновесие газов в условиях вакуума. Молекулярное течение. Тепловая эффузия.
- •64. Теплопроводность и вязкое трение в ультраразреженных газах.
- •65. Общие свойства жидкостей.
- •66. Молекулярное давление и поверхностное натяжение жидкостей.
- •67. Явления на границе жидкости и твердого тела.
- •68. Избыточное давление под искривленной поверхностью жидкости. Формула Лапласа.
- •69. Капиллярные явления.
- •70. Давление насыщенного пара над искривленной поверхностью жидкости.
- •72. Кипение. Перегрев жидкостей.
- •74. Кристаллические решетки. Решетки Браве. Элементы симметрии решетки. Классификация решеток Браве по кристаллографическим системам.
- •77. Плавление, кристаллизация и возгонка (сублимация) твердых тел.
- •78. Теплоемкость твердых тел. Классическая теория и ее недостатки.
- •79. Фазовая диаграмма кристалл-жидкость-газ. Тройная точка.
- •80. Фазовые переходы первого и второго рода. Фазовая диаграмма гелия.
6. Понятие вероятности. (Частотное и априорное определения вероятности события.)
Под событием в теории вероятностей понимают всякий факт, который в результате опыта может произойти или не произойти. Разные события имеют разную возможность наступить. Чтобы количественно сравнить события по степени возможности наступить, с ними связывают определенные числа, называемые вероятностью события, которое тем больше, чем более оно возможно. В качестве единицы измерения вероятности естественно принять вероятность достоверного события, т. е. такого события, которое в результате опыта наступает всегда. Так же естественно невозможному событию, т. е. событию, которое в данном опыте никогда не наблюдается, приписать вероятность равную нулю. Таким образом, по определению, диапазон изменения вероятностей – [0,1], т. е. вероятность возможного, но недостоверного события А
(А1) |
,
где буквой Р обозначена вероятность события А.
Введем некоторые вспомогательные понятия.
1. Говорят, что события А1, ..., Аn образуют полную группу, если в результате опыта обязательно наблюдается одно из них.
2. События А1, ..., Аn называют несовместными, если никакие два из них не могут произойти вместе.
3. События А1, ..., Аn называют равновозможными (равновероятными), если по условиям симметрии опыта следует считать, что ни одно из этих событий не имеет объективного предпочтения перед другим в возможности наступить.
Если выполнены все условия, ситуация называется схема случаев.
Вероятность каждого из исходов (событий можно вычислить по формуле
(А2) |
,
где m – число случаев, благоприятных событию А, а n – общее число всех возможных случаев.
7. Некоторые теоремы теории вероятности. (Теоремы сложения и умножения вероятностей. Условие нормировки вероятностей.)
Определение: Суммой С = А + В двух событий А и В называется событие С, состоящее в появлении хотя бы одного из событий А или В.
Теорема 1. Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий, т. е.
(А3) |
Доказательство проведем для событий, составляющих схему случаев.
Пусть возможные исходы опыта сводятся к совокупности случаев, которые мы для наглядности изобразим в виде n точек.
С л е д с т в и е 1. Если события А1,..., Аn образуют полную группу несовместных событий, то сумма их вероятностей равна единице
(А7) |
О п р е д е л е н и
е. Противоположными событиями
и
называют два несовместных события,
образующих полную группу.
Сумма вероятностей противоположных событий на основании следствия 1, очевидно, равна единице, т. е.
(А10) |
.
О п р е д е л е н и е. Событие А называют независимым от события В, если вероятность события А не зависит от того произошло событие В или нет, т. е.
(А11) |
В выражении (А11) Р(А/В) – есть вероятность события А при условии, что событие В имело место. Говорят, что Р(А/В) условная вероятность события А.
О п р е д е л е н и е. Произведением двух событий А и В называется событие, состоящее в совместном (или одновременном) появлении этих двух событий.
Теорема 2. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие имело место:
(А12) |
Докажем теорему 2 для событий, сводящихся к схеме случаев. Пусть возможные исходы опыта сводятся к n случаям, которые изобразим в виде точек
(А13) |
.
Вычислим Р(В/А), т. е. условную вероятность события B в предположении, что А имело место. Если известно, что событие А произошло, то из ранее возможных n случаев остаются возможными только те m случаев, которые благоприятствовали событию А. Из них l случаев благоприятны событию В. Поэтому
(А14) |
.
Подставляя (А13) и (А14) в (А12) получим тождество. Теорема доказана.
С л е д с т в и е 1. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий.
Следствие 1 непосредственно вытекает из определения независимости событий Р(В/А) = Р(В) и теоремы 2.
