
- •2. Статистический и термодинамический методы изучения систем многих частиц.
- •3. Массы атомов и молекул. Количество вещества.
- •4. Молекулярные силы
- •5. Агрегатные состояния вещества. Характер теплового движения в этих состояниях. Особенности теплового движения в различных агрегатных состояниях вещества.
- •6. Понятие вероятности. (Частотное и априорное определения вероятности события.)
- •7. Некоторые теоремы теории вероятности. (Теоремы сложения и умножения вероятностей. Условие нормировки вероятностей.)
- •8. Интегральная функция распределения. Случайные величины. Интегральная функция распределения случайной величины и её свойства.
- •9. Плотность вероятности и её свойства.
- •10. Средние значения случайных величин. (математическое ожидание). Среднее по времени и среднее по ансамблю. Эргодическая гипотеза (без доказательства).
- •11. Дисперсия и её свойства.
- •15. Модель идеального газа.
- •16. Равновесные состояния и процессы. Термодинамическое равновесие. Равновесные процессы.
- •17. Распределения молекул газа по направлениям движения в состоянии равновесия.
- •18. Число ударов молекул о стенку сосуда (о единицу площади за единицу времени).
- •19. Основное уравнение молекулярно-кинетической теории газов для давления. (Давление иг с точки зрения мкт.)
- •20. Температура и ее измерение. Эмпирические (Опытные) температурные шкалы. Идеально-газовая шкала температур.
- •21. Температура – мера средней кинетической энергии поступательного движения молекул. Молекулярно-кинетический смысл температуры.
- •22. Уравнение Менделеева – Клапейрона (Уравнение состояния идеального газа). Законы идеального газа (следствия из этого уравнения).
- •25. Распределение Максвелла для относительных скоростей (формула).
- •26. Экспериментальная проверка распределения Максвелла (опыт Штерна, опыт Ламерта).
- •27. Распределение Больцмана. Идеальный газ во внешнем поле сил. Барометрическая формула.
- •28. Распределение Максвелла-Больцмана
- •29. Понятие об отрицательных абсолютных температурах.
- •30. Флуктуация. Зависимость относительной флуктуации от числа частиц в системе. Роль флуктуации в науке и технике.
- •31. Теорема о равномерном распределении энергии теплового движения по степеням свободы. Число степеней свободы молекул. Средняя энергия теплового движения молекул газа.
- •32. Броуновское движение. Проверка распределения Больцмана в опытах с броуновским движением. Формула Эйнштейна для описания броуновского движения.
- •33. Внутренняя энергия. Термодинамический метод. Выражение для внутренней энергии идеального газа.
- •34. Работа и количество тепла. Первый закон термодинамики. Работа при равновесном и неравновесном изменении объема системы.
- •35. Теплоемкость. Применение 1-го начала термодинамики для вычисления теплоемкости вещества.
- •36. Теплоемкость молекулярного водорода (экспериментальная). Классическая теория теплоемкостей идеального газа. Ограниченность теоремы о равномерном распределении энергии по степеням свободы.
- •38. Адиабатный процесс. Уравнение адиабаты идеального газа. Работа идеального газа при адиабатическом изменении его объема.
- •39. Политропные процессы. Уравнение политропы идеального газа. Работа идеального газа при политропическом процессе.
- •40. Обратимые и необратимые процессы.
- •41. Круговые термодинамические процессы и циклы. Тепловые и холодильные машины. Работа при круговом процессе. Первое начало термодинамики в применении к круговому процессу.
- •42. Второе начало термодинамики в формулировках Кельвина и Клаузиуса, их эквивалентность. Недостаточность первое начала термодинамики для однозначного описания процессов, происходящих в природе.
- •43. Цикл Карно и его кпд.
- •44. Теоремы Карно. Кпд цикла Карно – верхний предел кпд тепловых машин.
- •45. Равенство Клаузиуса. Энтропия. Свойства энтропии. Математическое выражение второго начала термодинамики для обратимых процессов. Постоянство энтропии при обратимых процессах в замкнутой системе.
- •46. Основное уравнение термодинамики для обратимых процессов. Энтропия идеального газа.
- •48. Свободная энергия системы.
- •51. Уравнение Клапейрона-Клаузиуса (дифференциальное).
- •52. Уравнение Ван-дер-Ваальса – Уравнение состояния неидеальных газов. Опытное определение констант уравнения Ван-дер-Ваальса.
- •54. Внутренняя энергия газа Ван-дер-Ваальса. Адиабатическое расширения газа ВдВ в пустоту.
- •55. Эффект Джоуля-Томсона. Общая термодинамическая теория дифференциального эффекта Джоуля-Томсона.
- •56. Эффект Джоуля-Томсона в газе Ван-дер-Ваальса.
- •57. Сжижение газов. Получение низких и сверхнизких температур. Метод магнитного охлаждения.
- •58. Среднее число столкновений и средняя длина свободного пробега молекул. Эффективный диаметр газовых молекул. Понятие об эффективном сечении процесса столкновения частиц.
- •59. Общее уравнение явлений переноса. Явления переноса. Общее уравнение явлений переноса в газах.
- •60. Теплопроводность. Уравнение теплопроводности. Основной закон теплопроводности – закон Фурье. Вычисление и экспериментальное определение коэффициента теплопроводности.
- •61. Внутреннее трение (вязкость) газов. Основной закон вязкости – закон Ньютона. Вычисление (и экспериментальное определение) коэффициента вязкости.
- •62. Диффузия. Основной закон диффузии – закон Фика. Вычисление коэффициента самодиффузии газов.
- •63. Некоторые свойства разреженных газов. Физические явления в сильно разреженных газах. Определение вакуума. Течение и равновесие газов в условиях вакуума. Молекулярное течение. Тепловая эффузия.
- •64. Теплопроводность и вязкое трение в ультраразреженных газах.
- •65. Общие свойства жидкостей.
- •66. Молекулярное давление и поверхностное натяжение жидкостей.
- •67. Явления на границе жидкости и твердого тела.
- •68. Избыточное давление под искривленной поверхностью жидкости. Формула Лапласа.
- •69. Капиллярные явления.
- •70. Давление насыщенного пара над искривленной поверхностью жидкости.
- •72. Кипение. Перегрев жидкостей.
- •74. Кристаллические решетки. Решетки Браве. Элементы симметрии решетки. Классификация решеток Браве по кристаллографическим системам.
- •77. Плавление, кристаллизация и возгонка (сублимация) твердых тел.
- •78. Теплоемкость твердых тел. Классическая теория и ее недостатки.
- •79. Фазовая диаграмма кристалл-жидкость-газ. Тройная точка.
- •80. Фазовые переходы первого и второго рода. Фазовая диаграмма гелия.
28. Распределение Максвелла-Больцмана
Из соотношений
(1.10.5), (1.10.6) и (1.10.34) следует, что
число молекул,
обладающих почти заданным направлением
движения, определяем вектором
,
(1.14.1)
Разделим обе части (1.14.1) на объем V, занимаемый газом. В результате получим
(1.14.2)
где
–
число молекул в единице объема газа,
компоненты скоростей которых заключены
в интервалах (υx,
υx
+ dυx),
(υy,
υy
+ dυy),
(υz,
υz
+ dυz),
– кинетическая энергия молекулы, n
– число любых молекул в единице объема.
Если внешнее поле отсутствует, то
концентрация n
постоянна по всему объему газа. Если
же на газ наложено внешнее поле, то
концентрация n
молекул
определяется формулой Больцмана.
Подставив (1.13.18) в (1.14.2), получим
(1.14.3)
где E = Ek +EP - полная энергия молекулы.
Выражение (1.14.3)
определяет число молекул в единице
объема, взятого около точки с координатами
x,y,z,
компоненты скорости которых имеют
направления движения близкие к
направлению, определяемому вектором
.
Формула (1.14.3) объединяет в себе закон
Максвелла (1.10.34) о распределении молекул
по скоростям и закон Больцмана (1.13.18) о
распределении молекул по пространству
во внешнем поле, и поэтому называется
законом Максвелла – Больцмана.
Число молекул в объеме dV, находящемся около точки с координатами x,y,z, имеющих проекции скоростей в интервалах (υx, υx + dυx), (υy, υy+dυy), (υz, υz+dυz), равно
(1.14.4)
а вероятность, что какая-либо молекула находится в объеме dV с указанными выше проекциями скоростей, равна
,
(1.14.5)
где
,
а постоянная С
находится из условия нормировки:
. (1.14.6)
В распределении Максвелла – Больцмана полная энергия Е молекулы может принимать любые значения. В квантовой теории энергия молекулы может принимать лишь дискретные значения Е1,Е2,… В этом случае формула (1.14.4) заменяется следующей
, (1.14.7)
где Ni – число молекул в газе, которые обладают энергией Ei Формула (1.14.5) для квантового случая приобретает вид
, (1.14.8)
где постоянная C2 находится из равенства
, (1.14.9)
т. е.
.
Таким образом, распределение Максвелла – Больцмана (1.14.8) для квантового случая запишется так
. (1.14.10)
Распределение Максвелла –Больцмана разбивается на произведение двух сомножителей (исключая постоянные множители):
,
один из которых относится к распределению Максвелла по скоростям, другой – к распределению Больцмана по пространственным координатам молекул. Из теории вероятностей известно, что если совместная плотность вероятности двух случайных величин равна произведению плотностей вероятностей этих величин, то эти величины независимы. Таким образом, можно утверждать, что распределение Максвелла устанавливается при постоянной температуре независимо от того есть внешнее поле или его нет. И наоборот, распределение Больцмана также устанавливается всегда при постоянной температуре и не зависит от распределения скоростей молекул. Отсюда следует важный вывод: наложение на газ внешнего поля не может изменить среднюю квадратичную скорость молекул (температуру газа), так как она полностью определяется не зависящим от этого поля распределением Максвелла по скоростям.