
- •Лекция № 1. Вводная лекция
- •1.1Материя и формы движения материи. Физика, ее предмет и методы исследования.
- •Диаграмма иерархической организации материи
- •1.2. Биофизика. Значение физики и биофизики для биологии и медицины.
- •1.3. Связь физики с другими естественными науками. Содержание медицинской и биологической физики.
- •Лекция № 2. Системный подход и системный анализ в физике и биофизике
- •2.1. Понятие системы. Элементы системы и виды связи между ними
- •2.2. Кибернетические системы.
- •2.3.Системный анализ.
- •Система: законы поведения, свойства
- •Лекция № 3 методы численного анализа причинно-следственных связей.
- •Элементарный метод.
- •Метод регрессии
- •3.3 Метод корреляции.
- •Анализ с использованием показателей эластичности.
- •Лекция № 4. Моделирование.
- •Модели и их назначение.
- •Виды моделей.
- •4.3.Основные этапы математического моделирования.
- •Высшая математика. Занятие № 1. Теория пределов.
- •§ 1.1 Бесконечно малая и бесконечно большая величины.
- •§ 1.2. Предел переменной величины.
- •§ 1.3. Понятие о пределе функции. Некоторые приемы нахождения пределов функций.
- •Упражнения
- •Занятие №2. Производная функции
- •§ 2.1 Производная функции и метод ее нахождения
- •§ 2.2 Физический смысл производной функции.
- •2.3 Геометрический смысл производной.
- •§ 2.4 Производные второго и высших порядков. Механический смысл второй производной.
- •§ 2.5 Правило нахождения максимума и минимума функции.
- •§ 2.6 Построений графиков функций
- •Упражнения.
- •Занятие №3. Дифференциал функции.
- •§3.1 Дифференциал функции как главная часть приращения функции.
- •§ 3.2 Геометрический смысл дифференциала функции.
- •§ 3.3 Дифференциал второго порядка.
- •§ 3.4 Приложения дифференциала функции к приближенным вычислениям.
- •§ 3.5 Функции многих переменных. Предел функции.
- •§ 3.6 Частные производные. Полный дифференциал функции нескольких переменных.
- •Упражнения
- •Занятие №4. Неопределенный интервал.
- •§ 4.1 Понятие о неопределенном интеграле.
- •§ 4.2 Геометрический смысл неопределенного интеграла.
- •§ 4.3 Основные свойства неопределенного интеграла.
- •§ 4.4 Непосредственное интегрирование.
- •§ 4.5 Основные методы интегрирования.
- •Интегрирование методом разложения с использованием элементарных математических операций.
- •Интегрирование методом замены переменной.
- •Интегрирование по частям.
- •Упражнения.
- •2)Найти интегралы методом подстановки:
- •3.Найти интегралы методом интегрирования по частям:
- •§ 5.1 Определенный интеграл и его геометрический смысл.
- •Простейшие свойства определенного интеграла.
- •§ 5.2 Формула ньютона-лейбница.
- •§5.3. Замена переменной и интегрирование по частям в определенном интеграле.
- •Интегрирование по частям.
- •§5.4 Некоторые сведения о рядах и их использование в процессе интегрирования.
- •Признак Даламбера.
- •Разложение в степенной ряд функции.
- •Понятие об интегралах, не берущихся в элементарных функциях.
- •Приближенное вычисление интегралов методом разложения функции в ряд.
- •§5.5 Несобственные интегралы.
- •§ 5.6 Приближенные методы вычисления определенных интегралов.
- •Метод средних прямоугольников.
- •Метод трапеций.
- •Метод параболических трапеций (метод Симпсона).
- •§5.7 Приложения определенного интеграла Вычисление площади в декартовых координатах.
- •Объем тела вращения.
- •Длина дуги кривой.
- •Площадь поверхности тела вращения.
- •Упражнения.
- •Занятие № 6. Основные сведения о дифференциальных уравнениях.
- •§ 6.1 Общие понятия о дифференциальных уравнениях и их определение.
- •§6.2 Дифференциальные уравнения первого порядка с разделенными и разделяющимимся переменными.
- •§6.3 Однородные дифференциальные уравенния первого порядка.
- •§6.4 Линейные дифференциальные уравнения первого порядка.
- •§ 6.5 Дифференциальные уравнения второго порядка уравнения вида
- •§ 6.6 Комплексные числа и их алгебраическая форма.
- •§ 6. 7 Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •Рассмотрим эти случаи по порядку.
- •Упражнения.
- •Задачи.
- •Математическая статистика. Занятие № 1. Элементы комбинаторики. Бином ньютона.
- •§ 1.1. Множества
- •§ 1.2 Размещения
- •§ 1.3. Перестановки.
- •§1.4. Сочетания
- •1.5. Бином ньютона
- •Свойства разложения степени бинома.
- •Упражнения.
- •Занятие №2. Элементы теории вероятностей.
- •§ 2.1. Событие. Вероятность события.
- •§ 2.2. Основные теоремы теории вероятностей.
- •Теорема сложения вероятностей.
- •Теорема умножения вероятностей.
- •Условная вероятность.
- •Формула полной вероятности.
- •§ 2.3. Формула байеса (теорема гипотез)
- •§ 2.4. Формула бернулли.
- •§2.5. Теория вероятностей в генетике.
- •Примеры решения задач.
- •Упражнения
- •Занятие № 3 случайные величины и их основные характеристики.
- •§ 3.1. Случайная величина. Функция распределения.
- •Свойства интегральной функции распределения.
- •§ 3.2. Числовые характеристики случайных величин.
- •Характеристики разброса.
- •Моменты. Характеристики формы.
- •Упражнения.
- •Занятие № 4. Законы распределения случайных величин.
- •§ 4.1. Основные задачи математической статистики.
- •§ 4.2. Генеральная совокупность и выборка.
- •§ 4.3. Ряды распределения.
- •§ 4.4. Закон нормального распределения (закон гаусса)
- •§ 4.5 Распределение стьюдента.
- •§4.6. Оценка точности прямых равноточных измерений при малом числе опытов
- •Упражнения
- •Занятие № 5. Временные ряды
- •§ 5.1. Временные ряды и их виды.
- •§5.2. Характеристики динамики как единицы абсолютного и относительного измерения.
- •§5.3. Сущность и формы тренда и приемы выявления тенденции развития.
- •§5.4. Интерполяция и экстраполяция рядов динамики.
- •Контрольные вопросы.
- •Упражнения.
- •Используемая литература.
- •Оглавление
- •Высшая математика
- •Математическая статистика
- •Основы высшей математики и математической статистики
§ 1.3. Перестановки.
Если размещения из m элементов взяты по т т.е. различаются только порядком элементов, то такие размещения называются перестановками. Можно сказать, что каждая последовательность m элементов, составленная из этих элементов, называется перестановкой. Например, перестановки из двух элементов а и b будут размещения из 2 по 2, т.е. ab и bа, перестановки из трех элементов будут размещения из 3 по 3, т.е. abc, acb, bac, bca, cab, cba и т.п.
Число всевозможных перестановок из m обозначается Р (здесь Р есть начальная буква французского слова «permulation» , что значит «перестановка»).
Так как перестановки из m элементов - размещения из m no m, то число перестановок будет определяться формулой:
или
(1.2)
Число всевозможных перестановок из m элементов равно произведению натуральных чисел от 1 до m.
Произведение
чисел
обозначают
m!
(m
с восклицательным
знаком) и называют «m
-
факториал».
Например:
1!= 1,
Полагают
Часто используется рекуррентная формула:
(m+1)!=m!(m+1). (1.3)
Поскольку величина m! быстро увеличивается с ростом m, поэтому для больших значений m для определения указанной величины используется приближенная формула Стерлинга:
(1.4)
В некоторых формулах встречается m!! («полуфакториал»).
-
для четного m
=2k
-
для нечетного m=2k+1.
Справедливы формулы, указанные ниже:
(1.5)
(1.6)
§1.4. Сочетания
Если из всех размещений, которые можно составить из m элементов по n, мы отберем только те, которые одно от другого разнятся, по крайней мере, одним элементом, то получим соединения, которые называются сочетаниями.
Например, из четырех элементов а, b, с и d сочетания по 3 будут:
abc, abd, acd, bed.
Если в каждом из этих сочетаний сделаем всевозможные перестановки, то получим всевозможные размещения из четырех элементов по 3:
-
abc
abd
acd
bed
acb
adb
adc
bde
Ьас
bad
cad
cbd
эса
bda
cda
cdb
cab
dab
dac
dbc
cba
dba
dca
deb
Число таких
размещений равно, очевидно,
Таким образом, число всех размещений из m элементов по n, умноженному на число всех перестановок, какие можно сделать из n элементов, т.е.
(1.7)
где
обозначает число всех сочетаний из m
пo
n
(С есть начальная буква французского
слова «combinaison»,
что означает «сочетание»).
Отсюда получаем следующую формулу для числа сочетаний:
(1.8)
Например:
и т.п.
Формулу числа сочетаний можно привести к другому виду, если умножим числитель и знаменатель ее на произведение 1 2 3 ...(m-n). Тогда в числителе получим произведение m(m-1)...[m-(n-1)]ּ1ּ2ּ3ּ(m-n). Переставив сомножители, получим:
1 2 3 … (m-n)ּ[m-(n-1)]…m.
Следовательно:
Заменив в последней формуле n на m-n, получим:
Сравнивая последнюю формулу с предыдущей, находим:
(1.9)
Соотношение (1.9) позволяет упростить нахождение числа сочетаний из m элементов по n когда n превосходит m/2.
Например: