- •Лекция № 1. Вводная лекция
- •1.1Материя и формы движения материи. Физика, ее предмет и методы исследования.
- •Диаграмма иерархической организации материи
- •1.2. Биофизика. Значение физики и биофизики для биологии и медицины.
- •1.3. Связь физики с другими естественными науками. Содержание медицинской и биологической физики.
- •Лекция № 2. Системный подход и системный анализ в физике и биофизике
- •2.1. Понятие системы. Элементы системы и виды связи между ними
- •2.2. Кибернетические системы.
- •2.3.Системный анализ.
- •Система: законы поведения, свойства
- •Лекция № 3 методы численного анализа причинно-следственных связей.
- •Элементарный метод.
- •Метод регрессии
- •3.3 Метод корреляции.
- •Анализ с использованием показателей эластичности.
- •Лекция № 4. Моделирование.
- •Модели и их назначение.
- •Виды моделей.
- •4.3.Основные этапы математического моделирования.
- •Высшая математика. Занятие № 1. Теория пределов.
- •§ 1.1 Бесконечно малая и бесконечно большая величины.
- •§ 1.2. Предел переменной величины.
- •§ 1.3. Понятие о пределе функции. Некоторые приемы нахождения пределов функций.
- •Упражнения
- •Занятие №2. Производная функции
- •§ 2.1 Производная функции и метод ее нахождения
- •§ 2.2 Физический смысл производной функции.
- •2.3 Геометрический смысл производной.
- •§ 2.4 Производные второго и высших порядков. Механический смысл второй производной.
- •§ 2.5 Правило нахождения максимума и минимума функции.
- •§ 2.6 Построений графиков функций
- •Упражнения.
- •Занятие №3. Дифференциал функции.
- •§3.1 Дифференциал функции как главная часть приращения функции.
- •§ 3.2 Геометрический смысл дифференциала функции.
- •§ 3.3 Дифференциал второго порядка.
- •§ 3.4 Приложения дифференциала функции к приближенным вычислениям.
- •§ 3.5 Функции многих переменных. Предел функции.
- •§ 3.6 Частные производные. Полный дифференциал функции нескольких переменных.
- •Упражнения
- •Занятие №4. Неопределенный интервал.
- •§ 4.1 Понятие о неопределенном интеграле.
- •§ 4.2 Геометрический смысл неопределенного интеграла.
- •§ 4.3 Основные свойства неопределенного интеграла.
- •§ 4.4 Непосредственное интегрирование.
- •§ 4.5 Основные методы интегрирования.
- •Интегрирование методом разложения с использованием элементарных математических операций.
- •Интегрирование методом замены переменной.
- •Интегрирование по частям.
- •Упражнения.
- •2)Найти интегралы методом подстановки:
- •3.Найти интегралы методом интегрирования по частям:
- •§ 5.1 Определенный интеграл и его геометрический смысл.
- •Простейшие свойства определенного интеграла.
- •§ 5.2 Формула ньютона-лейбница.
- •§5.3. Замена переменной и интегрирование по частям в определенном интеграле.
- •Интегрирование по частям.
- •§5.4 Некоторые сведения о рядах и их использование в процессе интегрирования.
- •Признак Даламбера.
- •Разложение в степенной ряд функции.
- •Понятие об интегралах, не берущихся в элементарных функциях.
- •Приближенное вычисление интегралов методом разложения функции в ряд.
- •§5.5 Несобственные интегралы.
- •§ 5.6 Приближенные методы вычисления определенных интегралов.
- •Метод средних прямоугольников.
- •Метод трапеций.
- •Метод параболических трапеций (метод Симпсона).
- •§5.7 Приложения определенного интеграла Вычисление площади в декартовых координатах.
- •Объем тела вращения.
- •Длина дуги кривой.
- •Площадь поверхности тела вращения.
- •Упражнения.
- •Занятие № 6. Основные сведения о дифференциальных уравнениях.
- •§ 6.1 Общие понятия о дифференциальных уравнениях и их определение.
- •§6.2 Дифференциальные уравнения первого порядка с разделенными и разделяющимимся переменными.
- •§6.3 Однородные дифференциальные уравенния первого порядка.
- •§6.4 Линейные дифференциальные уравнения первого порядка.
- •§ 6.5 Дифференциальные уравнения второго порядка уравнения вида
- •§ 6.6 Комплексные числа и их алгебраическая форма.
- •§ 6. 7 Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •Рассмотрим эти случаи по порядку.
- •Упражнения.
- •Задачи.
- •Математическая статистика. Занятие № 1. Элементы комбинаторики. Бином ньютона.
- •§ 1.1. Множества
- •§ 1.2 Размещения
- •§ 1.3. Перестановки.
- •§1.4. Сочетания
- •1.5. Бином ньютона
- •Свойства разложения степени бинома.
- •Упражнения.
- •Занятие №2. Элементы теории вероятностей.
- •§ 2.1. Событие. Вероятность события.
- •§ 2.2. Основные теоремы теории вероятностей.
- •Теорема сложения вероятностей.
- •Теорема умножения вероятностей.
- •Условная вероятность.
- •Формула полной вероятности.
- •§ 2.3. Формула байеса (теорема гипотез)
- •§ 2.4. Формула бернулли.
- •§2.5. Теория вероятностей в генетике.
- •Примеры решения задач.
- •Упражнения
- •Занятие № 3 случайные величины и их основные характеристики.
- •§ 3.1. Случайная величина. Функция распределения.
- •Свойства интегральной функции распределения.
- •§ 3.2. Числовые характеристики случайных величин.
- •Характеристики разброса.
- •Моменты. Характеристики формы.
- •Упражнения.
- •Занятие № 4. Законы распределения случайных величин.
- •§ 4.1. Основные задачи математической статистики.
- •§ 4.2. Генеральная совокупность и выборка.
- •§ 4.3. Ряды распределения.
- •§ 4.4. Закон нормального распределения (закон гаусса)
- •§ 4.5 Распределение стьюдента.
- •§4.6. Оценка точности прямых равноточных измерений при малом числе опытов
- •Упражнения
- •Занятие № 5. Временные ряды
- •§ 5.1. Временные ряды и их виды.
- •§5.2. Характеристики динамики как единицы абсолютного и относительного измерения.
- •§5.3. Сущность и формы тренда и приемы выявления тенденции развития.
- •§5.4. Интерполяция и экстраполяция рядов динамики.
- •Контрольные вопросы.
- •Упражнения.
- •Используемая литература.
- •Оглавление
- •Высшая математика
- •Математическая статистика
- •Основы высшей математики и математической статистики
§6.2 Дифференциальные уравнения первого порядка с разделенными и разделяющимимся переменными.
Если дифференциальное уравнение первого порядка имеет вид
(5)
где f(y)-
функция от у,
-функция
от х,
то говорят, что в данном уравнении
переменные разделены. Решение такого
уравнения выполняется методом
непосредственного интегрирования:
Пример 1:
найти общий интеграл уравнения
Решение:
или
Пользуясь
произвольностью С,
можно 2С0
обозначить
через С
и общий интеграл переписать в следующем
виде:
Если дифференциальное уравнение после приведения его к общему знаменателю и соединения в один член всех членов, содержащих множителем один и тот же дифференциал, принимает вид:
(6)
то, такое уравнение
называют уравнением с разделяющимися
переменными. Его можно привести к виду
(5), разделив все члены на произведение
Пример 2: проинтегрировать уравнение
Решение: объединяем в один член слагаемые, содержащие :
Заменяем
на
и приводим уравнение к общему знаменателю:
Разлагаем на множители коэффициенты
при дифференциалах:
Разделив это
уравнение почленно на
,
имеем
Получилось уравнение вида (5). Интегрируем его:
;
Пользуясь произвольностью С0, заменяем 2С0 через ln C:
откуда в результате потенцирования получаем
или
Пример 3:
найти частное решение дифференциального
уравнения
удовлетворяющее условию
при х=0.
Решение:
;
или
Делим члены этого
уравнения на произведение
:
Получили уравнение вида (5). Интегрируем это уравнение:
;
отсюда
;
или
;
;
Мы нашли общее решение. Определяем значение С, удовлетворяющее начальному условию при х=0:
,
откуда С=а.
Следовательно, искомым частным решением будет функция
,
или
§6.3 Однородные дифференциальные уравенния первого порядка.
Дифференциальное уравнение первого порядка, имеющее вид
(7)
называется однородным если Р(х,у) и Q(x,y) являются однородными функциями переменных х и у одного и того же измерения. Так, например, уравнение
является однородным,
так как в нем
и
-
однородные функции переменных х
и у
одного и того же (третьего) измерения.
Однородное дифференциальное уравнение (7) приводится к виду уравнение с разделяющимися переменными подстановкой
(8)
где u- новая неизвестная функция.
Пример 1:
решить уравнение
Решение: в
данном случае
и
-
однородные функции одного и того же
(второго) измерения. Полагаем
,
откуда
Подставляем эти выражения y и dy в данное уравнение:
;
(9)
Получилось уравнение вида (6). Разделяя переменные, находим
Интегрируя это уравнение:
;
.
В результате потенцирования получается общий интеграл уравнения (9):
;
;
Определив u из уравнения (8) и заменив в последнем уравнении, находим общий интеграл данного уравнения:
,
или
.
