- •Лекция № 1. Вводная лекция
- •1.1Материя и формы движения материи. Физика, ее предмет и методы исследования.
- •Диаграмма иерархической организации материи
- •1.2. Биофизика. Значение физики и биофизики для биологии и медицины.
- •1.3. Связь физики с другими естественными науками. Содержание медицинской и биологической физики.
- •Лекция № 2. Системный подход и системный анализ в физике и биофизике
- •2.1. Понятие системы. Элементы системы и виды связи между ними
- •2.2. Кибернетические системы.
- •2.3.Системный анализ.
- •Система: законы поведения, свойства
- •Лекция № 3 методы численного анализа причинно-следственных связей.
- •Элементарный метод.
- •Метод регрессии
- •3.3 Метод корреляции.
- •Анализ с использованием показателей эластичности.
- •Лекция № 4. Моделирование.
- •Модели и их назначение.
- •Виды моделей.
- •4.3.Основные этапы математического моделирования.
- •Высшая математика. Занятие № 1. Теория пределов.
- •§ 1.1 Бесконечно малая и бесконечно большая величины.
- •§ 1.2. Предел переменной величины.
- •§ 1.3. Понятие о пределе функции. Некоторые приемы нахождения пределов функций.
- •Упражнения
- •Занятие №2. Производная функции
- •§ 2.1 Производная функции и метод ее нахождения
- •§ 2.2 Физический смысл производной функции.
- •2.3 Геометрический смысл производной.
- •§ 2.4 Производные второго и высших порядков. Механический смысл второй производной.
- •§ 2.5 Правило нахождения максимума и минимума функции.
- •§ 2.6 Построений графиков функций
- •Упражнения.
- •Занятие №3. Дифференциал функции.
- •§3.1 Дифференциал функции как главная часть приращения функции.
- •§ 3.2 Геометрический смысл дифференциала функции.
- •§ 3.3 Дифференциал второго порядка.
- •§ 3.4 Приложения дифференциала функции к приближенным вычислениям.
- •§ 3.5 Функции многих переменных. Предел функции.
- •§ 3.6 Частные производные. Полный дифференциал функции нескольких переменных.
- •Упражнения
- •Занятие №4. Неопределенный интервал.
- •§ 4.1 Понятие о неопределенном интеграле.
- •§ 4.2 Геометрический смысл неопределенного интеграла.
- •§ 4.3 Основные свойства неопределенного интеграла.
- •§ 4.4 Непосредственное интегрирование.
- •§ 4.5 Основные методы интегрирования.
- •Интегрирование методом разложения с использованием элементарных математических операций.
- •Интегрирование методом замены переменной.
- •Интегрирование по частям.
- •Упражнения.
- •2)Найти интегралы методом подстановки:
- •3.Найти интегралы методом интегрирования по частям:
- •§ 5.1 Определенный интеграл и его геометрический смысл.
- •Простейшие свойства определенного интеграла.
- •§ 5.2 Формула ньютона-лейбница.
- •§5.3. Замена переменной и интегрирование по частям в определенном интеграле.
- •Интегрирование по частям.
- •§5.4 Некоторые сведения о рядах и их использование в процессе интегрирования.
- •Признак Даламбера.
- •Разложение в степенной ряд функции.
- •Понятие об интегралах, не берущихся в элементарных функциях.
- •Приближенное вычисление интегралов методом разложения функции в ряд.
- •§5.5 Несобственные интегралы.
- •§ 5.6 Приближенные методы вычисления определенных интегралов.
- •Метод средних прямоугольников.
- •Метод трапеций.
- •Метод параболических трапеций (метод Симпсона).
- •§5.7 Приложения определенного интеграла Вычисление площади в декартовых координатах.
- •Объем тела вращения.
- •Длина дуги кривой.
- •Площадь поверхности тела вращения.
- •Упражнения.
- •Занятие № 6. Основные сведения о дифференциальных уравнениях.
- •§ 6.1 Общие понятия о дифференциальных уравнениях и их определение.
- •§6.2 Дифференциальные уравнения первого порядка с разделенными и разделяющимимся переменными.
- •§6.3 Однородные дифференциальные уравенния первого порядка.
- •§6.4 Линейные дифференциальные уравнения первого порядка.
- •§ 6.5 Дифференциальные уравнения второго порядка уравнения вида
- •§ 6.6 Комплексные числа и их алгебраическая форма.
- •§ 6. 7 Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •Рассмотрим эти случаи по порядку.
- •Упражнения.
- •Задачи.
- •Математическая статистика. Занятие № 1. Элементы комбинаторики. Бином ньютона.
- •§ 1.1. Множества
- •§ 1.2 Размещения
- •§ 1.3. Перестановки.
- •§1.4. Сочетания
- •1.5. Бином ньютона
- •Свойства разложения степени бинома.
- •Упражнения.
- •Занятие №2. Элементы теории вероятностей.
- •§ 2.1. Событие. Вероятность события.
- •§ 2.2. Основные теоремы теории вероятностей.
- •Теорема сложения вероятностей.
- •Теорема умножения вероятностей.
- •Условная вероятность.
- •Формула полной вероятности.
- •§ 2.3. Формула байеса (теорема гипотез)
- •§ 2.4. Формула бернулли.
- •§2.5. Теория вероятностей в генетике.
- •Примеры решения задач.
- •Упражнения
- •Занятие № 3 случайные величины и их основные характеристики.
- •§ 3.1. Случайная величина. Функция распределения.
- •Свойства интегральной функции распределения.
- •§ 3.2. Числовые характеристики случайных величин.
- •Характеристики разброса.
- •Моменты. Характеристики формы.
- •Упражнения.
- •Занятие № 4. Законы распределения случайных величин.
- •§ 4.1. Основные задачи математической статистики.
- •§ 4.2. Генеральная совокупность и выборка.
- •§ 4.3. Ряды распределения.
- •§ 4.4. Закон нормального распределения (закон гаусса)
- •§ 4.5 Распределение стьюдента.
- •§4.6. Оценка точности прямых равноточных измерений при малом числе опытов
- •Упражнения
- •Занятие № 5. Временные ряды
- •§ 5.1. Временные ряды и их виды.
- •§5.2. Характеристики динамики как единицы абсолютного и относительного измерения.
- •§5.3. Сущность и формы тренда и приемы выявления тенденции развития.
- •§5.4. Интерполяция и экстраполяция рядов динамики.
- •Контрольные вопросы.
- •Упражнения.
- •Используемая литература.
- •Оглавление
- •Высшая математика
- •Математическая статистика
- •Основы высшей математики и математической статистики
4.3.Основные этапы математического моделирования.
Математическое моделирование является мощным методом познания внешнего мира, прогнозирования и управления. Метод математического моделирования позволяет проникнуть в сущность изучаемых явлений. Процесс математического моделирования, т.е. изучение явления с помощью математической модели, в своей основе содержит четыре этапа.
Первый этап – это формулирование законов, связывающих основные объекты модели. Этот этап требует широкого знания фактов, относящихся к изучаемым явлениям и глубокого проникновения в их взаимосвязи. Эта стадия завершается записью в математических терминах, сформулированных качественных представлений о связях между объектами модели.
Второй этап представляет собой исследование математических задач, к которым приводят математические модели. Основным вопросом здесь является решение прямой задачи, т.е. получение в результате анализа модели выходных данных (теоретических следствий для дальнейшего их сопоставления с результатами наблюдений изучаемых явлений).
На этом этапе важную роль приобретает математический аппарат, необходимый для анализа математической модели, и вычислительная техника – мощное средство для получений количественной выходной информации как результат решения сложных математических задач.
Третий этап ставит целью выяснение следующего факта: удовлетворяет ли принятая (гипотетическая) модель критерию практики, т.е. выяснению вопроса о том, согласуются ли результаты наблюдений с теоретическими следствиями модели в пределах точности наблюдений, и решается вопрос о принятии или непринятии модели. Модель не может быть принята, если уклонения выходят за пределы точности наблюдений.
Четвертый этап – это последующий анализ модели в связи с накоплением данных об изучаемых явлениях и модернизация модели.
В процессе развития науки, техники данные об изучаемых явлениях все более и более уточняются и наступает момент, когда выводы, получаемые на основании принятой математической модели, не соответствует нашим знаниям о явлении. Таким образом, возникает необходимость построения новой, более совершенной математической модели. На рис. 4.1. показана блок – схема автоматизированной системы построения математической модели биосистемы. С использованием ЭВМ сравниваются выходные параметры биосистемы и математической модели, результаты сравнения обрабатываются в соответствии с введенными в ЭВМ критериями синтеза. ЭВМ выдает обобщенную информацию исследователю, с использованием которой он проводит коррекцию в процедуру, исследования биосистемы и построения математической модели. Типичным примером, иллюстрирующим характерные этапы в построении математической модели, является модель солнечной системы, которая в процессе своего развития прошла через ряд последовательных усовершенствований. В результате геоцентрическая модель Птолемея (2 в. н. э.) была отвергнута и принята гелиоцентрическая модель Коперника (1543г.), с последующими многочисленными уточнениями другими учеными. Метод математического моделирования, сводящий исследование явлений внешнего мира к математическим задачам, занимает ведущее место среди других методов исследования, особенно в связи с появлением ЭВМ. Он позволяет решать сложные задачи науки и техники.
Вывод информации
Выходные
параметры
модели ЭВМ
биосистема
сравне-ние
обра-ботка, синтез
В
ходные
п
Исследова-тель
араметры
б иосистемы
модель
Р
ис.
4.1. Блок – схема автоматизированной
системы моделирования.
