Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы для подготовки к экзамену кандидатского...doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.76 Mб
Скачать
  1. Структура научной теории.

    Научная теория – это логически организованное множество высказываний о некотором классе идеальных объектов, их свойствах и отношениях. Теоретические идеальные объекты (идеализированные объекты, абстрактные объекты, теоретические конструкты). Как создаются идеальные объекты в науке и чем отличаются от абстрактных эмпирических объектов? Обычно идеализация трактуется только как предельный переход от фиксируемых в опыте свойств эмпирических объектов к крайним логически возможным значениям их интенсивности (0 или 1); например, абсолютное черное тело – объект, способный полностью (100%) поглощать падающую на него световую энергию). Что характерно для таких предельных переходов при создании идеальных объектов? 1. Исходным пунктом движения мысли является эмпирический объект, его определенные свойства и отношения. 2. Само мысленное движение заключается в количественном усилении степени интенсивности «наблюдаемого» свойства до максимально возможного предельного значения. 3. В результате такого изменения мышление создает качественно новый (чисто мысленный) объект, который обладает свойствами, которые уже принципиально не могут быть наблюдаемы Наряду с операцией предельного перехода, в науке существует другой способ конструирования идеальных объектов – введение их по определению. В основном он используется в математике, частично – в теоретической физике. Особенно часто этот способ стал применяться в науке после введения неевклидовых геометрий. Зачем вводятся в науку идеальные объекты? Впервые этот вопрос был сформулирован Махом. Его же считают и основоположником инструменталистского подхода к теоретическим каркасам. Он считал, что главной целью научных теорий является их способность экономно репрезентировать всю имеющуюся эмпирическую информацию об определенной предметной области. Способ реализации данной цели, согласно Маху, заключается в построении таких логических моделей эмпирии, когда из относительно небольшого числа допущений выводилось бы максимально большое число эмпирически проверяемых следствий. С позиций эссенциализма, чьи истоки мы находим еще в античной философии, идеальные объекты и научные теории также описывают мир, но сущностный, тогда как эмпирическое знание имеет дело с миром явлений. Вместе с тем нельзя не предположить, что каждый из названных здесь подходов имеет свои основания. Сама природа идеальных объектов и их назначение в рамках теоретических каркасов может быть различной. С одной стороны, они, так или иначе, репрезентируют объекты действительности. Но значение их этим не исчерпывается. Они всегда имеют некое дополнительное значение, выходящее за рамки непосредственного опытного содержания. Именно за счет такого содержания данный объект может быть использован в других областях. Вот почему Р.Карнап говорил о принципиальной невозможности редукции теоретических объектов к эмпирическим. Возможна лишь частичная интерпретация. Одновременно нельзя не отметить, что в теоретических построениях существуют и идеальные объекты, которые служат инструментальным целям и их логико-гносеологическая функция очевидна. Говорить об объективации таких объек-тов не имеет смысла. Позитивистская традиция на всех ступенях ее развития настаивала на принципиальной сводимости теоретического к эмпирическому. Но даже после всевозможной критики данной традиции проблема объективации теоретических каркасов при решении конкретных проблем научного знания осталась. Тот механизм, который был предложен, например, в рамках неопозитивизма, не выдерживал критического анализа. Однако это вовсе не означает, что проблема объективации не поднимается в науке вовсе. Эта проблема действительно возникает и приобретает огромную значимость в различных исследовательских ситуациях: что мы изучаем, что скрывается за нашими идеальными конструктами, насколько обосновано введение того или иного допущения, как проверить то или иное теоретическое утверждение и пр. Выделение только двух уровней рационального познания слишком упрощает картину. Дело в том, что научное познание может быть представлено на различных подуровнях, имеющих различное отношение к эмпирии; например, существуют теории более абстрактные, менее абстрактные; феноменологические и нефеноменологические; дедуктивные и недедуктивные и пр. Каждый из перечисленых подуровней, видов теорий могут иметь особые механизмы объективации. Вместе с тем можно попытаться их систематизировать. Так, в естествознании известны два основных способа объективации: проекция теоретического каркаса через метатеоретический уровень научного познания на картину мира (через субстантивные постулаты, транзитивные определения и пр.) и эмпирическая интерпретация и верификация. При всей относительной свободе интеллектуального комбинирования, в конечном итоге, его результаты должны быть апробированы. Цель объективации – прояснить роль того или иного идеального объекта и его смысл в концептуальной системе. В первом случае объективация происходит через подведение теоретических каркасов под общезначимые образы действительности, зафиксированные в науч-ной картине мира, что возможно через субстантивные постулаты, приписывающие некие общепринятые свойства действительности (например, принципы синергетизма, всеобщего эволюционизма и пр. в современной научной картине мира), а также транзитивные определения, с помощью которых осуществляется перевод концептуальных каркасов на компоненты картины мира. Можно констатировать, что в данном случае речь идет о семантической онтологизации концептуальных каркасов (концептуальная, или семантическая, интерпретация). Второй путь – это эмпирическая интерпретация и верификация (путем экспериментальных, измерительных процедур, опытного исследования). Сразу следует отметить, что в той мере, в какой теоретическим конструктам возможно приписать эмпирическое значение, они могут быть представлены как репрезентации реального мира. Эмпирическая интерпретация может быть определена как переход к производным конструктам и построению эмпирических схем, с учетом правил соответствия. Схематически взаимосвязь между теоретическим (Т) и эмпирическим знанием (Э) может быть изображена так: Ао →Тео→ао~ео J Где Ао – аксиомы, принципы, наиболее общие теоретические законы; Тео – час-ные теоретические законы; ао – единичные теоретические следствия; ео – эмпи-рические утверждения; J – внелогическая процедура идентификации. Данная схема представляет многоуровневый подход к системе научного знания, которое содержит в себе теоретические каркасы разной степени общности. Если Ао – это высший уровень абстракции, то все последующие – уровни более конкретного плана. Но опять же логической выводимости одного уровня из другого нет. Например, Ао – это принципы классической механики; Тео – законы движения идеального маятника; если подставить конкретные величины на место переменных в законах, то получим ео. Более того, операции построения частных теоретических каркасов не даны в явном виде в самой фундаментальной теории; они демонстрируются на конкретных образцах (в эталонных ситуациях), причем для разных исследуемых объектов они будут разные. Отсюда, построение таких схем может быть рассмотрено как самостоятельная исследовательская задача. Само соотношение фундаментальных и частных теоретических каркасов может быть различным (например, последние входят в состав первых на правах ее раздела; или лишь частично пересекаются с ней, например, классическая модель излучения абсолютно черного тела построена на базе представлений термодинамики и электродинамики). Таким образом, единичные следствия из общих и частных теоретических законов могут сравниваться с эмпирическим знанием после их эмпирической интерпретации и идентификации с соответствующими эмпирическими высказываниями. J – внелогическая процедура идентификации означает совмещение логических уникалий с эмпирическими схемами с помощью операциональных определений и правил соответствия. Правила соответствия – это совокупность связей эмпирического и теоретического уровней теории Т, таких, что введенные теоретические конструкты получают с помощью этих связей частичные эмпирические интерпретации. Операциональные определения – это указания и описания методов и процедур, с помощью которых можно зафиксировать эмпирическую информацию о данном идеальном объекте. С помощью указанных определений теоретический объект погружается в эмпирический контекст: его можно обнаружить, наблюдать, измерить. Например, напряжение тока можно измерить с помощью вольтметра и пр. Отметим, что в первой половине ХХ века американский физик Бриджмен П.И. предложил подход, согласно которому вся эмпирическая интерпретация теоретических объектов сводилась к процедуре измерения. Такой подход получил название операционализма, однако вскоре он был признан ошибочным. Идентификация теоретических и эмпирических терминов осуществляется с помощью идентификационных предложений («редукционные предложения», по Карнапу), в которых утверждается определенное тождество значений конкретных терминов эмпирического и теоретического языка. Некоторые примеры таких предложений: «материальные точки суть планеты Солнечной системы», «евклидова прямая суть луч света». Например, «световой луч» - конструкт, который входит в концептуальный каркас классической механики, но одновременно это и эмпирическое понятие. Р.Карнап писал, что несмотря на то, что общий вид интерпретационных предложений имеет логическую форму «А есть В», они отнюдь не являются суждениями, а суть определения, являющиеся, по сути, условными соглашениями о значении терминов. Поэтому к ним не применима характеристика истинности или ложности. Они могут быть лишь эффективными или нет; полезными или нет. Эти предложения имеют инструментальный характер. Их задача – быть звеном между теорией и эмпирией. Но эти предложения не произвольны, поскольку всегда являются элементами некоторой конкретной языковой системы, термины которой взаимосвязаны и ограничивают возможные значения друг друга. Вместе с тем следует отметить, что теоретические каркасы не могут быть эмпирически интерпретированы полностью, у них всегда имеется некоторый неинтерпретируемый остаток; кроме того, всегда имеется возможность предложить новую интерпретацию любой теории, расширив сферу ее применимости. В истории науки и философии встречались подходы, ставящие строгие методологические регулятивы к введению теоретических идеальных объектов. Например, принцип наблюдаемости Гейзенберга; или запрет на абсолютно неинтерпретируемые термины. Но при введении таких ограничений сразу же возникали вопросы. В общем виде схема взаимосвязи теории и опыта может быть символически записана так: Т1+I1→Е1, где Т – проверяемая на опыте теория; I – ее эмпирическая интерпретация, Е – эмпирические следствия. Теория проверяется на опыте всегда не сама по себе, а только вместе с присоединенной к ней эмпирической интерпретацией. Проблема истинности Т не может быть решена только путем ее сопоставления с опытом. Ее решение требует дополнительных средств и, в частности, привлечения более общих – метатеоретических – предпосылок и оснований научного познания.

  2. Научная картина мира. Особенности современной картины мира.

Научная картина мира (НКМ) – общие представл-я науки опред. периода о мире, его устройстве, типах взаимосвязей объектов. Научная онтология, систематизация знаний. НКМ: общенаучная; естественнонаучная, социально-научная, специальная (частная, локальная). Взаимодействие 2-х подходов: исследование ее взаимосвязей с мировоззрением и философией + рассмотрение связей НКМ с конкретными теориями и опытом. Наука в большей степени имеет дело не с фактами, а с проблемами, решение к-рых зависит от принятых методологич. и онтологич. норм (Лаудан) => Научная картина мира = исследовательская программа эмпирического поиска + стратегия теорет. исследований.

Принято выделять 3 НКМ: 1) Аристотелевская 2) Классическая (Ньютоновская) 3) Неклассическая (Эйнштейновская) 4) Постнеклассическая ? – сейчас формируется

Неклассическая наука (НН) (по С.Тулмину) Формирование НН началось с исследования Фарадеем и Максвеллом явлений электричества и магнетизма, которые не допускали механического толкования. (В классической физике взаимодействие вещества описывалось ньютоновской механикой, где основными понятиями были пространство, время, материя, сила). Нов.состояние, способное порождать силу и не связанное с телом, было названо полем, ему соответствовала теория Максвелла, которая усилила математизацию физики. После Максвелла физич. реальность мыслилась в виде непрерывных полей, описываемых дифференциальными уравнениями в частных производных. Наглядность физического мира все более ограничивалась. Утратило смысл понятие "пустое пространство", при описании микромира и мегамира масса стала пониматься как одна из форм энергии, время - как не имеющее единого течения. ОТО изменила представления физики об объективности. Масса, считавшаяся неизменной характеристикой вещества, оказалась зависящей от скорости движ-я тела, пространство может искривляться вблизи гравитирующих масс, время замедляться и т.п. Классич. концепции знания ставятся под сомнение: в самом ли деле знание есть точная копия реальности? (напр., Э. Мах) Возникли вопросы, в результате анализа к-рых выяснилось, что одна и та же реальность м. б. описана в разных теориях, не существует одного метода научн. деятельности, методы историчны. Релятивизация физики! (Квантовая механика окончательно развеяла притязания на универсальное и точное описание объекта). Исследов-е микромира и гносеологические обобщения нового опыта, составили суть новой научности, впоследствии обозначенной как неклассическая. В классич. физике измеряемая величина определяется однозначно, в квантов. механике наше представл-е о событиях формируется только на основе статистич. данных, здесь нет места для законов, но есть закономерности. На базе квантов. механики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь. Одинаковые элементарные частицы в одинаковых условиях могут вести себя по-разному. Акад. В.С. Степин предложил: 1. классическая рациональность (осн. критерии науч. позн-я таковы, что они сосредоточивают внимание исследователя исключительно на характеристиках объекта, не принимая во внимание субъекта познания). 2. неклассическая рациональность (учитывает отнесенность характеристик объекта к средствам и операциям, используемым в процессе исследования). 3. постнеклассическая рациональность (соотносит знания об объекте не только со средствами, но и с ценностно-целевыми структурами деятельности).

Научная картина мира (НКМ) – общие представл-я науки опред. периода о мире, его устройстве, типах взаимосвязей объектов. НКМ - систематизация знаний (общенаучная; естественнонаучная, социально-научная, специальная (частная, локальная)). Выделяют уровни систематизации: додисциплинарная, дисциплинарная, современная.

Принято выделять НКМ:

1) Аристотелевская (физика, которая описывает реальность, конечный космос))

2) Классическая (Ньютоновская – механический подход к миру)

3) Неклассическая (Эйнштейновская, Фарадей – электро-магнетизм рушит механику, нет физического взаимодействия.)

4) Постнеклассическая (не все выделяют)

Формирование неклассической науки началось с исследования Фарадеем и Максвеллом явлений электричества и магнетизма, которые не допускали механического толкования. В классической физике взаимодействие вещества описывалось ньютоновской механикой, где основными понятиями были пространство, время, материя, сила.

Новое состояние, способное порождать силу и не связанное с телом, было названо полем, ему соответствовала теория Максвелла, которая в значительной степени усилила математизацию физики. Как отмечал М. Клайн, после Максвелла физическая реальность мыслилась в виде непрерывных полей, описываемых дифференциальными уравнениями в частных производных. Наглядность физического мира все более ограничивалась. Три века физика была механической и имела дело только с веществом, которое локализовано в пространстве и может быть однозначно определено в системе координат. Утратило смысл понятие "пустое пространство", при описании микромира и мегамира масса стала пониматься как одна из форм энергии, время - как не имеющее единого течения...

Начиная с Маха, концепции классического знания ставятся под сомнение: в самом ли деле знание есть точная копия реальности? Возникли вопросы, в результате анализа которых выяснилось, что одна и та же реальность может быть описана в разных теориях, не существует одного метода научной деятельности, методы историчны. Во-первых, методы зависят от объекта, во-вторых, сама методика не стала связываться только с объектом. Мах вообще счел целесообразным не обращаться к понятию объективной реальности, а принять опытные данные как единственную реальность. Он настаивал на том, что "все физические определения относительны" [19], показывая это через основные физические понятия (пространство, время, материя...). Такую логику предлагали многие ведущие ученые этого периода, ставшего для физики революционным.

Потеряв надежду на соответствие теории объективной реальности и исходя из принципа экономии мышления, они ограничились реальностью опыта: "Нет никакой необходимости, чтобы определение научило нас тому, что такое сила сама в себе, или тому, есть ли она причина или следствие движения... Не важно знать, что такое сила, но важно знать, как ее измерить"

ОТО существенно изменила представления физической науки об объективности. Масса, считавшаяся неизменной характеристикой вещества, оказалась зависящей от скорости движения тела, пространство может искривляться вблизи гравитирующих масс, время замедляться... Классическая физика признает, что длина движущегося и покоящегося стержня одинакова. ОТО обнаружила ложность и такого утверждения.

Релятивизация физики обострила проблему физической реальности, расшатав одну из важнейших опор классической научности - объективность. Но вера в научный универсализм и фундаментализм пока сохранялась. Известно, что А. Эйнштейн не отступил от поисков полного описания природы.

Квантовая механика окончательно развеяла притязания на универсальное и точное описание объекта. Исследование микромира и гносеологические обобщения нового познавательного опыта, составили суть новой научности, впоследствии обозначенной методологами науки как неклассическая. В классической физике измеряемая величина определяется однозначно, в квантовой механике наше представление о событиях формируется только на основе статистических данных, здесь нет места для законов, но есть закономерности. На базе квантовой механики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь. Одинаковые элементарные частицы в одинаковых условиях могут вести себя по-разному.

Частицы микромира непосредственно не наблюдаемы, но могут быть заданы математически. Это позволило математикам говорить о новом понимании реальности. Реальный мир есть не то, о чем говорят наши органы чувств с их ограниченным восприятием внешнего мира, а скорее то, что говорят нам созданные человеком математические теории.

В классической науке представления о физической реальности создавались на эмпирическом уровне, при помощи чувственного познания. Математический аппарат создавался уже на последующем этапе, после онтологического оформления наглядно представленной и описанной на обыденном языке реальности. Математический формализм надстраивался над уже готовой онтологической схемой. В квантовой механике формирование математического аппарата было закончено до того, как сформировалась онтологическая схема и категориальный аппарат теории. Это создавало совершенно иную гносеологическую ситуацию.

В чем же основное отличие квантово-механической реальности от классической? Важнейшей установкой классической науки является объективизм, что означает, что картина мира должна быть картиной изучаемого объекта самого по себе, то есть объектной, не включающей средства изучения этого объекта. Квантово-механический способ описания с необходимостью включает в себя не только изучаемые объекты, но и приборы, используемые для их изучения, а также сам акт измерения. Н. Бор вводит принцип дополнительности для описания объектов микромира. Принцип дополнительности рассматривают как методологический, восполняющий ограниченные возможности языка при описании корпускулярно-волновой природы микромира. Но он имеет и физический смысл, будучи связанным с так называемым соотношением неопределенностей, сформулированным в 1927 г. Гейзенбергом. Согласно последнему, в квантовой механике не существует состояний, в которых и местоположение, и количество движения имели бы вполне определенное значение. Частица со строго определенным импульсом совершенно не локализована. И наоборот, для точной локализации необходимы бесконечно большие импульсы, что физически невозможно.

Оказывается, что "ни один результат опыта, касающийся явления, лежащего вне области классической физики, не может быть истолкован как дающий информацию о независимых свойствах объекта. Если в классической физике элементами реальности были вещи, то в квантовой механике в роли элементов физической реальности выступают акты взаимодействия объекта с прибором, то есть процессы наблюдения.

Ситуация еще более усложняется, если учесть, что разные измерения, проведенные с помощью одного прибора над одним и тем же микрообъектом, дают различные количественные значения. Налицо новая гносеологическая ситуация - различие в степени определенности существующего.

Несмотря на остающиеся до сих пор вопросы, познание в атомной физике явилось совершенно новым (гносеологически) опытом, который в методологии науки обозначили неклассическим. Наблюдатель не только наблюдает свойства объекта, но и определяет, называет эти свойства, которые имеют смысл не сами по себе, а сообразно наблюдательной ситуации. По словам Гейзенберга, "то, с чем мы имеем дело при наблюдении, это не сама природа, но природа, доступная нашему методу задавать вопросы".

Влияние человека (как наблюдателя) на этом уровне природы не устранимо. Согласно этим представлениям классический идеал описания природы оказался весьма ограниченным. Классическая физика объясняет движение тел, параметры которых, включая массу, скорость и др., находятся в весьма узком диапазоне величин. Неклассическая наука отказалась от основных постулатов позитивистской научности - фундаментализма, универсализма, интерсубъективности, кумулятивизма. Центральным аспектом науки стали не объекты, а отношения. В познании квантово-механической реальности складывается ситуация образования проектов реальности. Уже не имеет смысла говорить о реальности самой по себе.

Чтобы охарактеризовать эти изменения, сошлемся на высказывание акад. Н. Н. Моисеева, который вспоминает о том, как ему было поручено выступить с докладом, причем критическим, о методологии дополнительности Н. Бора на методологическом семинаре. "Вместе с чтением его работ уходила вера в непогрешимость классического рационализма, исчезло представление о возможности существования Абсолютного Наблюдателя, а следовательно, и Абсолютной Истины. Принять последнее было для меня особенно трудным, но и стало самым существенным, ибо Абсолютная Истина - была главным столпом, на котором покоилось мое тогдашнее мировоззрение. Вопрос о том, как же все происходит на самом деле, мне казался центральным вопросом научного знания. И отказ от самого вопроса стал революцией в моем сознании. История моего прозрения, я думаю, достаточно типична. Научное мышление очень консервативно, и утверждение новых взглядов, складывание новых методов научного познания, поиски адекватного представления об Истине и формирование в умах ученых непротиворечивой картины мира происходили медленно и очень непросто".

Постнеклассическая наука

Классическая наука возникла в условиях борьбы со схоластическим, авторитарным, средневековым мышлением. Наука XVII-XIX в.в. - это, прежде всего, поиск метода. Основой универсального научного метода исследования стало измерение. Наука основана на убеждении, что природа может быть отражена в научной картине мира, то есть моделью "квантифицированной" реальности. Научное знание трактуется как "чистое" знание - знание об объекте, субъект дистанцирован от объекта.

В XIX столетии концепция классического знания ставится под сомнение. Научное знание уже не рассматривается как точная копия реальности. Выяснилось, что одна и та же реальность может быть описана в разных теориях, не существует одного метода научной деятельности. Неклассическая физика характеризуется не только новой методологией, учитывающей условия познания. Изменилось и представление о физической реальности, это уже не пространство (однородное и изотропное), заполненное веществом, а сеть взаимосвязанных событий.

Реальность постнеклассической науки (вторая половина XX в.) - это сеть взаимосвязей, в которую включен человек, причем, не только через условия познания. "Замешанность" человека в структуре и эволюции Вселенной, согласно антропному принципу, более глубока. Объектами постнеклассической науки становятся сложные природные комплексы, включающие человека, такие как биосфера, ноосфера, отсюда - "человекоразмерность" как характеристика объектов постнеклассической науки. В самосознании ученых это выражается, если не как отказ от объективизма, являвшегося доминантой научного исследования, то как пересмотр концепции объективизма. Как иначе понять высказывание Г. Сколимовски, заметившего, что не существует реальности самой по себе, к которой разум наносит визит, реальность складывается с человеком.

Познавательная ситуация второй половины XX в. характеризуется стиранием грани между естественнонаучным и гуманитарным знанием. Наряду с сохраняющейся дисциплинарной организацией знания, идет активное формирование междисциплинарного знания, в котором науки объединяются в процессе решения конкретной проблемы. В этом синтезе устанавливается новое отношение человека к природе - отношение диалога. Для нового этапа развития науки характерно снятие субъектно-объектного дуализма, в результате уходит со сцены науки "абсолютный наблюдатель", субъект и объект принимаются в их равной ипостаси. Гуманизация знания не означает отказа от объективности, природа как бы проговаривает себя через человека.

Если обобщить черты постнеклассической науки, то можно сказать, что постнеклассическая наука характеризуется экологизацией мышления, разрушением мифа о всесилии науки, иным способом объяснения мира, где истина конструируется, а не предстает как слепок объекта. Происходит переход от статического, структурно ориентированного мышления к мышлению динамическому, ориентированному на процесс.