Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОПІР ВЕСЬ.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
4.87 Mб
Скачать

§54. Розрахунки на міцність при косому згині. Визначення прогинів.

При розрахунках на міцність по допустимим напругам потрібно, щоб виконувалася умова

(119)

Формула (119) справедлива для всіх перерізів, що вписуються в прямокутник таким чином, що крайні чотири точки перерізу співпадають з вершинами прямокутника, наприклад, для двотавра, швелера, складених перерізів із них і т. д.

При виконанні проектного розрахунку балок, що працюють на косий згин, із формули (119) потрібно знайти моменти опору перерізу.

Так як в цю формулу входять дві невідомі величини Wx і Wy, то для розв’язку задачі необхідно задатися відношенням . У зв’язку з цим для практичного застосування формулу (119) зручніше перетворити наступним чином:

звідки

,

(120)

де — коефіцієнт, що приймається для першого наближення рівним 8 10 для двотаврового перерізу і 6 8 для швелерів. Для прямокутних перерізів цей коефіцієнт завжди дорівнює відношенню висоти перерізу h до його ширини b;

.

Формула (120) є формулою проектного розрахунку по допустимим напругам при косому згині.

Приклад 32. Знайти найбільші напруги в поперечному перерізі прогону покрівлі (рис.103). Проліт прогону l=4 м. Прогон несе вертикальне рівномірно розподілене навантаження інтенсивністю q=2 кН/м. Кут нахилу покрівлі до горизонту α = 20°. Прогон працює як балка з шарнірними опорами.

Рис.103

Розв’язок. Розкладемо навантаження q по осях:

. .

Навантаження qy згинає балку відносно осі x, найбільший згинальний момент виникає в середині прольоту

.

Навантаження qx згинає балку відносно осі y, найбільший момент при цьому

.

Для швелера №18а Wx = 132 cм3, Wy = 20 см3.

Для швелера найбільші напруги виникають в точці А верхньої полиці, це напруги стиску. За формулою (114) знайдемо

Приклад 33. Підібрати переріз двотавра для прогону покрівлі, що має нахил до горизонту α = 25°, під рівномірно розподілене навантаження інтенсивністю q = 2,5 кН/м, що діє у вертикальній площині. Проліт прогону l = 4 м. Допустима напруга . Прогон працює як балка з шарнірними опорами.

Розв’язок. Розкладемо навантаження як у попередньому прикладі:

. .

Найбільші згинальні моменти

.

.

Використовуємо формулу (120) та підбираємо переріз:

.

Для першого наближення приймаємо k = 9.

. За таблицями приймаємо двотавр №18а з Wx = 159 cм3. .

Перевіряємо напругу за формулою (119)

Недонапруга складає , що недопустимо.

Приймаємо двотавр №18 з Wx = 1433, Wy = 18,4 см3, тоді напруги

Недонапруга складає .

Приймаємо двотавр №16 з Wx=109 см3, Wy=14,5 см3, тоді напруга

Перенапруга складає . Остаточно приймаємо двотавр №18 з Wx = 1433, Wy = 18,4 см3.

Для перерізів, у яких обидві головні осі є осями симетрії, умову міцності можна записати на основі формули (116), знайшовши максимальні напруги:

(121)

Тоді умова міцності для таких перерізів приймає вигляд:

(122)

Для визначення прогинів в різних перерізах балки при косому згині знову застосуємо принцип незалежності дії сил. Повертаючись до прикладу, який розглядався в попередніх параграфах, знаходимо спочатку прогин точки 0 (вільного кінця балки) тільки від дії сили Fy (рис.101,а); цей прогин fy, буде направлений по осі y і дорівнює

,

Аналогічно прогин точки 0 від сили Fx буде направлений по осі x і виразиться формулою

.

Повний прогин f кінця балки буде являти собою геометричну суму обох цих прогинів (рис.104); він дорівнює

(123)

При цьому

і .

(124)

Рис.104

Звідси виходить, що кут між віссю y і повним прогином f дорівнює кутові β, тобто прогин f направлений перпендикулярно до нейтральної осі. Згин балки відбувається не в площині дії зовнішніх сил, а в площині, що перпендикулярна до нейтральної осі.

Приклад 34. Підібрати переріз дерев’яних лат висотою h і шириною b та визначити переміщення середини їх прольоту. Проліт лат (відстань між кроквами) дорівнює l = 4 м, кут нахилу покрівлі до горизонту α = 25°. Навантаження від снігу та власна вага покриття є рівномірно розподілене навантаження інтенсивністю q = 4 кН/м. Лати спираються як проста балка на двох опорах. Допустима напруга , модуль пружності матеріалу .

Розв’язок. Найбільший згинальний момент Mmax буде посередині прольоту:

.

За формулою (122) знайдемо

,

де ,

так як але , тоді ,

звідси

Найбільший прогин лат буде посередині прольоту. Моменти інерції перерізу дорівнюють

.

Кут нахилу нейтральної осі β знаходимо за формулою (118)

,

звідти кут β = 45,36°. Кут між площиною згину та силовою площиною складає

.

Прогин в площині найбільшої жорсткості дорівнює

,

де .

Повний прогин дорівнює

.

осі x (паралельно стороні b) дорівнюєПрогин в напрямку

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]