- •Корпускулярно-волновая природа электромагнитного излучения
- •1. Проблемы излучения абсолютно черного тела
- •1.1. Основные определения
- •1.2. Закон Кирхгофа
- •1.3. Законы излучения ачт
- •2. Внешний фотоэффект
- •3. Энергия и импульс световых квантов
- •4. Эффект Комптона
- •29.5. Модель атома Бора – Резерфорда. Опыты Франка и Герца
- •29.6. Спектр атома водорода по Бору
- •Элементы квантовой механики
- •1. Корпускулярно-волновой дуализм
- •2. Соотношение неопределенностей Гейзенберга
- •3. Волновая функция и ее статистический смысл
- •30.4. Уравнение Шредингера
- •5. Решение уравнения Шредингера для микрочастицы, находящейся в бесконечно глубокой потенциальной яме
- •30.6. Квантовый гармонический осциллятор
- •7. Туннельный эффект
- •31. Физика атомов и молекул
- •31.1. Квантово-механическая модель атома водорода
- •31.2. Опыт Штерна и Герлаха. Спин электрона
- •31.3. Принцип Паули. Периодическая система элементов Менделеева
- •31.4. Рентгеновские спектры
- •31.5. Типы межатомных связей и образование молекул
- •31.6. Молекулярные спектры
- •31.7. Комбинационное рассеяние света
- •31.8. Люминесценция
- •32. Элементы квантовой статистики
- •32.1. Классическая и квантовая статистики
- •32.2. Распределения Ферми-Дирака и Бозе-Энштейна
- •33. Физика твердого тела
- •33.1. Элементы зонной теории кристаллов
- •33.2. Диэлектрики
- •33.3. Металлы
- •33.4. Полупроводники
- •33.5. Примесная проводимость полупроводников
- •33.7. Полупроводниковые приборы
- •33.8. Фотопроводимость
- •34. Макроскопические квантовые эффекты
- •34.1 Явление сверхпроводимости
- •34.2. Эффект Джозефсона
- •34.3. Сверхтекучесть
- •35. Основы квантовой электроники
- •35.1. Взаимодействие излучения с веществом
- •35.2. Инверсная заселенность
- •35.3. Лазеры
- •36. Физика атомного ядра
- •36.1. Строение и основные характеристики атомных ядер
- •36.2. Энергия связи ядра. Дефект массы
- •36.3. Свойства ядерных сил
- •36.4. Феноменологические модели ядра
- •36.5. Радиоактивные превращения атомных ядер
- •36.6. Закономерности -распада
- •36.7. Закономерности -распада
- •36.9. Ядерные реакции
- •36.40. Спонтанное деление ядер
- •36.11. Вынужденное деление ядер. Цепная реакция деления
- •36.12. Ядерный реактор
- •36.13. Термоядерные реакции
- •36.14. Дозиметрические единицы
- •37. Элементарные частицы
- •37.1. Фундаментальные взаимодействия
- •37.2. Классы элементарных частиц
- •37.3. Характеристики элементарных частиц
- •37.4. Частицы и античастицы
- •37.5. Лептоны
- •37.6. Адроны
- •37.7. Кварки
- •37.8. Переносчики фундаментальных взаимодействий
1.3. Законы излучения ачт
Рис. 3
Сформулируем частные законы излучения АЧТ.
1. Закон Стефана - Больцмана. Интегральная испускательная способность АЧТ пропорциональна четвертой степени его абсолютной температуры, т.е.
-
.(8)
где — постоянная Стефана - Больцмана.
2. Закон смещения (Вина). Частота, на которую приходится максимум испускательной способности АЧТ, пропорциональна его абсолютной температуре:
-
,(9)
где b — постоянная Вина.
Закон Вина устанавливает положение максимума кривой r*(,T) с повышением температуры максимум смещается в область более высоких частот.
3. Высота максимума кривой r*(,T). Она устанавливается следующим законом (иногда его называют вторым законом Вина): максимальная испускательная способность АЧТ пропорциональна кубу его абсолютной температуры:
-
(10)
где с — постоянная.
Эти законы, однако, не дают возможности воспроизвести явный вид функции r*(,T). Для нахождения вида этой функции Д. Релей и Д. Джине воспользовались классическим законом распределения энергии по степеням свободы (§ 9.3) и получили следующее выражение для испускательной способности АЧТ:
-
(11)
где c — скорость света; k — постоянная Больцмана.
Формула Релея – Джинса (11) хорошо согласуется с опытом в области малых частот, однако в области больших частот эта формула резко расходится с экспериментом (пунктирная линия на рис. 3). Такое несоответствие теории и эксперимента получило название ультрафиолетовой катастрофы.
Таким образом, в рамках классической физики не удалось объяснить закономерности теплового излучения АЧТ. Причина этого состоит в принципиальной неприменимости законов классической физики к элементарным процессам, обусловливающим тепловое излучение.
4. Формула Планка. В 1900 г. М. Планк высказал гипотезу, что процесс испускания и поглощения света происходит не непрерывно, а определенными порциями (квантами), энергия которых определяется формулой
-
(12)
где h = 6,62·10-34 Дж·с — универсальная константа, называемая постоянной Планка.
С помощью таких квантовых представлений о природе излучения Планк нашел функцию распределения энергии излучения АЧТ по частотаv (см. прил. 6):
-
(13)
которая очень точно воспроизводит экспериментальную кривую r*(,T).
С помощью формулы Планка (29.13) можно объяснить все закономерности излучения АЧТ, установленные ранее. В частности, в области низких частот, когда h/kT<<1, можно приближенно представить экспоненту в (29.13) в виде
-
(14)
Подставив (14) в (13), получим формулу Релея – Джинса.
Закон Стефана – Больцмана можно получить из формулы Планка, проинтегрировав выражение (13) по частоте в пределах от 0 до ∞:
Для вычисления интеграла сделаем замену h/kT=x; отсюда kTx/h, dkTdx/h. Тогда
Мы получили закон Стефана – Больцмана, причем постоянная
Закон смещения Вина можно получить из формулы Планка, приравняв первую производную по частоте к нулю:
Взяв производную, получим
где
-
(15)
Полученное уравнение решается методом последовательных приближений и имеет единственный корень x = 2,821. Из формулы (15) следует
-
(16)
т.е. мы получили закон Вина с постоянной b;
И наконец, второй закон Вина получим, если подставим (16) в формулу Планка:
5. Пирометрия. Раздел технических приложений, использующих закономерности теплового излучения для измерения температуры нагретых тел, называется пирометрией. Пирометры — это приборы для измерения температуры нагретых тел по интенсивности их теплового излучения. Основное условие применимости методов пирометрии состоит в том, что тело, температуру которого измеряют с помощью пирометра, должно находиться в тепловом равновесии и обладать поглощательной способностью, близкой к единице.
Различают яркостные, цветовые и радиационные пирометры.
В простейшем визуальном яркостном пирометре с исчезающей нитью объектив фокусирует изображение исследуемого тела на плоскость, в которой расположена нить (ленточка) специальной лампы накаливания. Через окуляр и красный фильтр нить рассматривают на фоне изображения тела и, изменяя ток накала нити, добиваются, чтобы яркости нити и тела были одинаковы (нить становится неразличимой на фоне тела). Шкалу прибора, регистрирующего ток накала, градуируют обычно в градусах Цельсия или Кельвина, и в момент выравнивания яркостей нити и тела прибор показывает так называемую яркостную температуру тела Tя.
Для измерения температуры тел, которые в оптическом диапазоне являются серыми, применяют цветовые пирометры. Этими пирометрами измеряют яркость тела в двух областях спектра — синей и красной (например, c = 0,48 мкм и кр= 0,60 мкм). Шкала прибора градуирована в °С и показывает цветовую температуру Tц.
Наиболее чувствительны радиационные пирометры, регистрирующие суммарное излучение тела. Действие их основано на законах Стефана –Больцмана и Кирхгофа. Объектив радиационного пирометра фокусирует наблюдаемое излучение на приемник, сигнал от которого регистрируется прибором, калиброванным по излучению АЧТ и показывающим радиационную температуру Tр. В качестве приемника используют либо термостолбик (батарею последовательно соединенных термопар), либо болометр, действие которого основано на уменьшении сопротивления полупроводников при их нагреве.
Измеряемые с помощью пирометров температуры (яркостная Tя, цветовая Tц, или радиационная Tр) пересчитываются на основании законов теплового излучения в истинную. Например, истинная T и радиационная Tр температуры связаны соотношением
где aT — поглощательная способность тела.
Методами пирометрии измеряют температуру в печах и других нагревательных установках, температуру расплавленных металлов, нагретых газов, племени, плазмы. Их широко используют в автоматизированных системах контроля и управления температурными режимами разнообразных технологических процессов.
Лекція 38.
Зовнiшнiй фотоефект. Енергiя i iмпульс свiтлових квантiв. Ефект Комптона. Свiтловий тиск.
