
- •2. Дифференциация нейроэпителиальных клеток на предшественников нервных и глиальных клеток.
- •4. Шесть этапов формирования нервной системы.
- •5. Причины прогрессивного развития нервной системы от диффузной трубчатой.
- •6. А)Подходы к изучению мозга человека. Б)Общий план строения нервной системы. Цнс и периферическая нервная система. В) Какие процессы в организме контролирует нервная система.
- •7. А)Почему необходимы эксперименты на животных?б) Экстирпация – самый древний метод изучения функций мозга. В)Хирургические методы лечения мозга.
- •8. Электрофизиологические методы изучения мозга: микроэлектродный, метод вызванных потенциалов, микроионофорез, стереотаксический метод.
- •9 Участие спинного мозга в формировании периферической нервной системы. Строение и функции спинного мозга.
- •10. Функции: продолговатого мозга, Варолиева моста и мозжечка. Ретикулярная формация
- •11. Функции среднего мозга. Роль красного ядра и черной субстанции в регуляции движений. Роль бугров четверохолмия в формировании ориентировочных рефлексов.
- •12. Таламуса – коллектор афферентных импульсов. Специфические и неспецифические ядра таламуса. Таламус – центр болевой чувствительности.
- •13. Гипоталамо-гипофизарная система. Гипоталамус – центр регуляции эндокринной системы и мотиваций.
- •14. . Нейрон – особенности строения и функций. Отличия нейронов от других клеток. Глия, гематоэнцефалический барьер, цереброспинальная жидкость
- •15. .Афферентные нейроны, их функции и строение. Рецепторы: строение, функции, формирование афферентного залпа.
- •16. Строение и функции эфферентных и промежуточных нейронов, роль мембраны сомы. Дендриты - рецептивное поле нейрона. Роль шипиков.
- •17. Аксон и аксональный транспорт (быстрый и медленный, антероградный и ретроградный). Аксонная терминаль
- •18. Раздражимость и возбудимость. Порог раздражения. Физиология возбудимых мембран Строение мембраны нервной клетки.
- •19. Формирования потенциал покоя и потенциала действия. Критический уровень деполяризации. Рефрактерный период.
- •20. Распространение потенциала действия по миелинизированным и немиелинизированным нервным волокнам. Роль миелиновой оболочки в проведении возбуждения.
- •23. Строение и функции соматической нервной системы. Эфферентное и афферентное звенья соматической нервной системы. Спинальное и супраспинальное управление мотонейронами.
- •24. А) Рефлекторная функция спинного и головного мозга. Б)Работы и.М.Сеченова и и.П.Павлова в развитии рефлекторной теории. В)Открытие торможения.
- •25. А) Двигательные рефлексы спинного мозга. Б)Моно и полисинаптические рефлекторные дуги. В)Коленный рефлекс.
- •26. Механизмы поддержания постоянства внутренней среды организма и регуляция работы внутренних органов.
- •27. Особенности функций симпатической и парасимпатической нервной системы. Строение симпатической нервной системы.
- •28. Строение парасимпатической нервной системы. Регуляция работы сердца.
- •29. А) Вегетативные рефлексы. Б) Рефлексогенные зоны сосудистого русла и их роль в регуляции работы сердца и кровяного давления. В) Роль волюморецепторов и атриумнатрийуретического пептида.
- •30. А)Химическая передача в соматической и вегетативной нервной системе. Б)Работы о.Леви и г.Дейла.
- •33. А)Синаптическая передача в цнс. Медиаторы цнс. Б)Строение химического синапса в цнс. В)Особенности строения и функций везикул. Г)Роль белков в передаче информации.
- •35. Медиаторные системы мозга. Холинергическая система мозга и ее участие в двигательных и вегетативных реакциях, в обучении и памяти. Болезнь Альцгеймера.
- •36. Медиаторные системы мозга. Дофаминергическая система мозга, ее роль в возникновении болезни Паркинсона и шизофрении.
- •37. Аминокислоты-медиаторы цнс: глутамат, глицин, гамк. Гамк-ергическая система и проблемы эпилепсии. Бензодиазепины.
- •38. Норадренергическая и серотонинергическая системы мозга и их участие в обучении с положительным и отрицательным подкреплением.
- •39. Нейросекреция. Нейропептиды-медиаторы и модуляторы синаптической передачи. Сосуществование в одной аксонной терминали нейропептидов и медиаторов. Г)Принцип Дейла и его критика.
19. Формирования потенциал покоя и потенциала действия. Критический уровень деполяризации. Рефрактерный период.
Как же принимает участие мембрана в возникновении биоэлектрических потенциалов, какую роль играют каналы и насосы? В основе всего лежит разность концентраций ионов Na+, K+, Cl-, Ca++ в клетке и окружающей среде
ИОН |
Микромоль на |
Литр |
|
|
Цитоплазма |
Кровь |
Морская вода |
Калий |
360 |
10.0 |
10.0 |
Натрий |
69 |
425 |
460 |
Хлор |
157 |
500 |
560 |
Кальций |
0.4 |
10.0 |
10.0 |
Мембрана в состоянии покоя ПОЛЯРИЗОВАНА. Это значит, что есть разность потенциала между внутренней и наружной поверхностями мембраны. Первая причина поляризации мембраны –это выход КАЛИЯ из клетки в состоянии покоя по концентрационному градиенту: калия в клетке в 10-20 раз больше, чем в окружающей среде. Среда в клетке остается суммарно нейтральной, так как положительный заряд калия компенсируется отрицательными зарядами таких аминокислот, как АСПАРАГИНОВАЯ, ПИРОВИНОГРАДНАЯ, УКСУСНАЯ.
Вторая причина – свободная проницаемость каналов для калия в состоянии покоя.
Для изучения механизмов формирования потенциала покоя и потенциала действия широко использовали крупные нервные клетки ганглиев пиявок, виноградной улитки, гигантские аксоны кальмара. Для выполнения экспериментальной работы необходим микроэлектрод, который вводят в клетку через мембрану. При этом мембрана плотно охватывает кончик микроэлектрода и нет утечки калия из клетки. Необходим также измерительный прибор. Если два электрода прикасаются к поверхностной части мембраны, между ними нет разности потенциалов – на экране прибора регистрируется 0. Как только кончик одного микроэлектрода входит в клетку, касаясь внутренней поверхности мембраны, происходит на экране скачек и регистрируется разность потенциалов – т.е. ПОТЕНЦИАЛ ПОКОЯ. (РИС,) Его величина различна у разных объектов.
Гигантский аксон кальмара |
50-70 мВ |
Мышечное волокно сердца лягушки |
61-82 мВ |
Водоросль нителла |
100-125 мВ |
Исходя из концентрации ионов калия в клетке и окружающей среде по формуле НЕРНСТА можно рассчитать величину потенциала покоя для каждого объекта. НО – мембрана незначительно проницаема в покое и для ионов натрия и хлора. Эти потоки меняют величину мембранного потенциала и он рассчитывается по формуле ГОЛЬДМАНА. Но по концентрационному градиенту калий выходит до момента формирования равновесного потенциала по калию Ек. Происходит уравновешивание двух процессов – выхода калия из клетки под воздействием сил диффузии и электростатической силы, которая возникает в результате скопления на наружной поверхности мембраны ионов калия .Это и есть потенциал покоя.
При раздражении мембраны, резко снижается проницаемость для ионов калия и возрастает для ионов натрия. Если раздражающий стимул достигает порога – (или критического уровня деполяризации) – натрий лавинообразно входит в клетку и происходит перезарядка мембраны – ДЕПОЛЯРИЗАЦИЯ. До критического уровня деполяризации каналы для натрия открываются, но только их малая часть, поэтому ПД не возникает. Если потенциал на мембране достиг критического уровня деполяризации (КУД), возникает ПД и теперь мембрана изнутри заряжена положительно, а снаружи - отрицательно. Таким образом – возникновение деполяризации, т.е. возбуждения или потенциала действия (ПД), определяется потоком ионов натрия внутрь клетки по ионным каналам. На пике ПД натриевые каналы инактивируются, открываются калиевые каналы и наступает реполяризация, т.е. восстановление исходной поляризации мембраны– потенциала покоя. Этот процесс обеспечивается потоком ионов калия внутрь волокна. Таким образом, натриевые каналы могут быть в трех состояниях: закрыты, но их можно открыть раздражением мембраны (электрическим, механическим, температурным):открыты; инактивированы, когда срабатывают инактивационные ворота и каналы невозможно открыть никаким раздражением. В этот момент клетка или волокно находятся в состоянии абсолютной рефрактерности (невозбудимости). Удлинение рефрактерного периода приводит к снижению частоты, которую может воспроизводить данное возбудимое образование. Самый длительный рефрактерный период в волокнах сердечной мышцы, что препятствует возникновению экстрасистолии при появлении патологического очага возбуждения в сердце.
21. Строение и функции ионных каналов. Блокатора ионных каналов. Роль натрий-калиевого насоса клетки в поддержании ПП, Na+K+АТФ-аза.
Но как же тогда происходит движение ионов через мембрану? Эту задачу решают белки, встроенный в мембрану, т.е. в билипидный слой. Белки могут быть частично погружены в билипидный слой с внеклеточной стороны или изнутри клетки. Если белок находится на поверхности мембраны, то на них находятся короткие разветвленные цепочки полисахаридов, образующие ГЛИКОКАЛИКС, с помощью которого клетки опознают друг друга. (РИС.) Некоторые белки насквозь пронизывают мембрану – билипидный слой, они называются ТРАНСМЕМБРАННЫЕ и именно они образуют ИОННЫЕ КАНАЛЫ. Основные ионы, участвующие в генерации электрических сигналов –K+, Na+, Ca++, Cl- - движутся через соответствующие каналы. Для каждого иона есть свой канал и они имеют разное строение. Ионы могут проходить через канал ПАССИВНО по градиенту концентрации (от большей к меньшей) и по ЭЛЕКТРИЧЕСКОМУ ПОТЕНЦИАЛУ НА МЕМБРАНЕ КАНАЛА.
Трансмембранные или интегративные белки асимметрично распределены в бислое и многократно его пересекают. ПО строению – это ЗИГЗАГООБРАЗНЫЕ БЕЛКИ, которые образуют ДОМЕНЫ. Например, в натриевом канале 4 домена (РИС.). Каждый домен имеет 6 трансмембранных участков –S1-S6. Между участками S5-S6 располагается пора для входа натрия. В самом начале канала находится широкое устье, которое сужается до размеров иона селективным фильтром. Далее идет водная пора и система «ворот», которые могут открывать и закрывать канал. Кроме селективного фильтра имеется сенсоры напряжения с определенным зарядом. Следовательно натриевые каналы потенциалзависимые, т.е. вход натрия регулируется зарядом на мембране. Количество каналов на единицу площади мембраны, и изменение состояния мембраны при прекращении работы того или иного канала изучалось с применением различных ядов. Например, если обработать нервное волокно тетраэтиламмонием, перестают работать калиевые каналы, а при действии тетродотоксина ( из рыбы фугу), перестают работать натриевые каналы и можно подсчитать их число на мембране. Еще один тип трансмембранных белков – НАСОСЫ – переносчики веществ через мембрану против концентрационного градиента. Эти белки-насосы необходимы для переноса метаболитов – глюкозы, аминокислот и ионов для поддержания исходной разности их концентраций в клетке и окружающей среде.
Вход натрия в клетку и активно и пассивно и выход калия из клетки постепенно нарушает исходную разность концентраций. Это активирует фермент натрий-калиевую АТФ-азу, и она обеспечивает работу натрий-калиевого насоса, которые выводит из клетки 3 иона натрия против концентрационного градиента и 2 иона калия «заталкивает» в клетку также против концентрационного градиента. Таким образом, возникновение ПП и ПД не требует затраты энергии. Движущая сила заложена для этого процесса в разности концентраций и законам осмоса. Но для поддержания исходной концентрации ионов необходима энергия.
Задача мембраны сомы нейрона – формировать возбуждение - ПД, а задача аксона – передача ПД к следующему нейрону или к органу-эффектору. ПД распространяется по мембране немиелинизированного волокна, как огонь по Бикфордову шнуру: участок возбужденный обеспечивает возбуждение соседнего участка мембраны. Происходит постепенное перемещение петли тока, которая возникает между + и - на мембране. Скорость распространения ПД зависит от величины диаметра и физиологического состояния волокна.