
- •1. Однокристальные микро эвм (омэвм)
- •1.1. Общие особенности управляющих микроконтроллеров.
- •1.2 Структура мк-системы управления
- •1.3. Четырехразрядные микроконтроллеры.
- •2. Микроконтроллеры семейства mcs48
- •2.1. Состав семейства mcs-48
- •2.3. Формат слова состояния
- •2.4. Условия логических переходов
- •2.5. Память программ (пп)
- •2.6. Память данных (пд)
- •2.7. Организация ввода/вывода омэвм
- •2.9. Схема синхронизации и управления мк
- •2.10 Основные отладочные режимы работы
- •2.12. Система команд
- •2.12.1 Команды пересылок
- •2.12.4. Расширение адресного пространства ву
- •2.12.5. Команды передачи управления.
- •1. Коды условных переходов
- •2. Команды безусловного перехода
- •2.12.6. Команды управления режимом работы мк
- •3. Методы расширения адресного пространства.
- •Схемная реализация метода базовых регистров.
- •4. Семейство омэвм к1816ве31/51 (iMcs-51)
- •4.1. Назначение выводов
- •4.2. Структурная схема i8051
- •4.3.Арифметико-логическое устройство
- •4.4. Организация памяти
- •4.4.1. Память программ (пзу).
- •4.4.2. Память данных (озу).
- •4.5. Область регистров специального назначения (рсн).
- •4.6. Синхронизация омэвм
- •4.7. Порты ввода-вывода.
- •Устройство портов.
- •Особенности электрических характеристик портов.
- •4.8. Таймер-счетчики
- •Режимы работы т/с.
- •4.9. Система прерываний
- •Выполнение подпрограммы прерывания. Система прерываний формирует аппаратный вызов (lcall) соответствующей подпрограммы обслуживания, если она не заблокирована одним из следующих условий:
- •4.10. Последовательный канал.
- •Скорость приема-передачи.
- •4.11.Работа с внешней памятью микроконтроллера 8051.
- •4.12. Режимы микроконтроллера 8051 с пониженным энергопотреблением.
- •4.13. Система команд кр1816ве51
- •4.13.1. Общая характеристика.
- •4.13.2. Типы команд
- •4.13.3. Способы адресации
- •5 Старших разрядов адреса рсн
- •4.13.4. Команды логического процессора
- •4.13.5. Команды пересылок
- •4.13.6. Команды логической обработки
- •4.13.7. Команды арифметической обработки
- •4.13.8. Команда передачи управления
- •5. Расширения микропроцессоров семейства mcs-51/52.
- •5.5. Маркировка микроконтроллеров фирмы Intel.
- •5.6. Pca микроконтроллера 8051.
- •Регистр режимов pca таймера-счетчика cmod.
- •Регистр управления рса таймером-счетчиком ccon.
- •5.8. Модули сравнения-захвата pca микроконтроллеров mcs-51.
- •Регистр режимов модуля сравнения захвата ссарМn.
- •Режимы работы рса.
- •5.9. Режимы работы pca микроконтроллеров семейства mcs-51. Режим захвата.
- •Режим 16-разрядного программируемого таймера.
- •Режим скоростного вывода.
- •Режим сторожевого таймера (watchdog timer).
- •Режим генерации импульсов заданной скважности.
- •5.10 Аналого-цифровой преобразователь микроконтроллеров семейства mcs-51.
- •Adcon - Регистр управления преобразователем.
- •Addat - регистр результатав преобразования.
- •Dapr - регистр программирования опорных напряжений ацп.
- •Синхронизация ацп и время преобразования.
- •5.11. Таймер счетчик т/с2 микроконтроллера 8052.
- •Регистр управление таймера/счетчика 2 t2com.
- •Режимы работы таймера/счетчика 2.
- •Регистр режима таймера/счетчика 2 т2моd.
- •Дополнительный регистр приоритетов прерываний iрн.
- •6. Семейство mcs-251
- •7. Однокристальные микроконтроллеры Intel mcs-96.
- •7.1 Общая характеристика.
- •7.2. Структура микроконтроллера.
- •7.3. Периферийные устройства. Устройства ввода и вывода данных.
- •Устройство ввода и вывода дискретных сигналов.
- •Устройства ввода и вывода аналоговых сигналов
- •Устройства обмена данными с другими микроконтроллерами и центральным процессором.
- •Устройства приема и обслуживания запросов прерывания.
- •Устройства контроля правильности функционирования микроконтроллера.
- •7.4. Характеристики микроконтроллеров подсемейств.
- •7.5. Почему 80c196 быстрее, чем 8051?
Режим сторожевого таймера (watchdog timer).
Сторожевой таимер - это схема, которая автоматически сбрасывает микроконтроллер, если не получает oт управляемой системы сигнала, который подтверждает, что не произошло никакого сбоя. Такое устройство используется в системах, (где есть электрические помехи или сбои по питанию и, где нужно обеспечить большую надежность. В режиме сторожевого таймера может работать только четвертый модуль. Сигнал сброса срабатывает всякий раз, когда происходит совпадение значения РСА таймера-счетчика со значением регистров ССАР4Н, CCAP4L (см. рисунок). Бит WDTE в регистре CMOD устанавливает этот режим. При этом четвертый модуль должен находиться или в режиме программируемого таймера, или скоростного вывода. Сторожевой таймер сбрасывает ОЭВМ также, как при подаче высокого уровня на девятую "ножку" микросхемы. Предотвратить сброс можно тремя способами:
периодически изменять значение в регистрах ССАР4Н, CCAP4L, так что бы оно никогда не совпало с РСА таймером-счетчиком;
периодически изменять регистры СН, CL РСА таймера-счетчика, чтобы они никогда не совпали со значением в регистрах ССАР4Н, GCAP4L;
выключить режим охранного таймера путем сброса бита WDTE перед тем, как произойдет совпадение и затем снова включить его.
Первые два способа являются более надежными, поскольку третий способ трудно реализовать. Второй способ не рекомендуется применять, если таймер РСА используется другим модулем. Если сторожевой таймер не нужен, то четвертый модуль может работать в любом другом режиме.
Сторожевой таимер.
Режим генерации импульсов заданной скважности.
Любой из пяти модулей может быть использован как генератор импульсов заданной скважности. Частота генерируемых импульсов непосредственно зависит от частоты сигналов на счетном входе РСА таймера-счетчика. При внешнем резонаторе 16МГц, максимальная возможная частота генерируемых импульсов будет 15.6КГц. В этом режиме происходит сравнение регистра CL (младший байт РСА таймера-счетчика) с регистром CCAPnL (см. рисунок).
Когда CL < CCAPnL на внешнем контакте будет сигнал низкого уровня, при CL>=CCAPnL на выходе будет сигнал высокого уровня. Значение в CCAPnL задает скважность импульсов. Для того. чтобы во время изменения значения CCAPnL на выходе не возникло помех, нужно новое значение записывать в регистр ССАРnН. Затем это значение аппаратно загрузится в CCAPnL при переходе CL из значения 0FFH в 00Н, что будет соответствовать началу следующего периода. Изменяя значение в ССАРпН от 0 до 255 можно задавать скважность от 100% до 0.4%.
Режим генерации импульсов заданной скважности.
5.10 Аналого-цифровой преобразователь микроконтроллеров семейства mcs-51.
Аналого-цифровой преобразователь микроконтроллера семейства MCS-51/52 (например, типа SAB 80515 фирмы Siemens или 80C51GB) обеспечивает 8 битное преобразование и имеет восемь мультиплексных каналов аналогового входного сигнала "на чипе". Кроме того, аналого-цифровой преобразователь имеет схему выборки-хранения и возможность программирования опорных напряжений, что позволяет увеличивать точность преобразования, сужая пределы измерения. Преобразование осуществляется методом последовательного приближения с использованием конденсаторной цепи. Длительность цикла преобразования от 15 до 29 машинных циклов.
В аналого-цифровом преобразователе имеются три доступных для пользователей специальных функциональных регистра:
ADCON- регистр управления аналого-цифрового преобразователя,
ADDAT- регистр данных аналого-цифрового преобразователя, и
DAPR- регистр программирования опорных напряжений.